+++
Los glucosaminoglucanos que se encuentran en los proteoglucanos están constituidos por disacáridos repetitivos
++
Los proteoglucanos son proteínas que contienen glucosaminoglucanos enlazados de modo covalente. Se han caracterizado al menos 30 y se les han asignado nombres como sindecano, betaglucano, serglicina, perlecano, agrecano, versicano, decorina, biglucano y fibromodulina. Varían en su distribución en los tejidos, la naturaleza de la proteína central, los glucosaminoglucanos fijos, y la función. Las proteínas unidas de manera covalente a los glucosaminoglucanos se llaman “proteínas centrales”; han resultado difíciles de aislar y caracterizar, pero el uso de tecnología de DNA recombinante está empezando a proporcionar información importante acerca de sus estructuras. La cantidad de carbohidrato en un proteoglucano por lo general es mucho mayor que la que se encuentra en una glucoproteína, y puede comprender hasta 95% de su peso. En las figuras 48-6 y 48-7 se muestra la estructura general de un proteoglucano particular, el agrecano, el principal tipo que se encuentra en el cartílago. Es muy grande (de aproximadamente 2 × 103 kDa); su estructura general semeja la de un limpiabotellas. Contiene una cadena larga de ácido hialurónico (un tipo de GAG) al cual proteínas de enlace se fijan de modo no covalente. A su vez, estas últimas interactúan de manera no covalente con moléculas de proteína centrales desde las cuales se proyectan las cadenas de otros GAG (queratán sulfato y condroitín sulfato en este caso). Más adelante, cuando se comenta el cartílago, se proporcionan más detalles sobre esta macromolécula.
++
++
Hay por lo menos siete glucosaminoglucanos (GAG): ácido hialurónico, condroitín sulfato, queratán sulfatos I y II, heparina, heparán sulfato y dermatán sulfato. Un GAG es un polisacárido no ramificado constituido de disacáridos repetitivos, un componente del cual siempre es un azúcar amino (de ahí el nombre GAG), sea d-glucosamina o d-galactosamina. El otro componente del disacárido repetitivo (excepto en el caso del queratán sulfato) es un ácido urónico, sea ácido l-glucurónico (GlcUA) o su 5′-epímero, ácido l-idurónico (IdUA). Con la excepción del ácido hialurónico, todos los GAG contienen grupos sulfato, sea como O-ésteres o como N-sulfato (en la heparina y el heparán sulfato). El ácido hialurónico proporciona otra excepción porque no hay evidencia clara de que esté fijo de modo covalente a proteína, como lo especifica la definición de un proteoglucano antes proporcionada. Ha resultado difícil trabajar tanto con GAG como con proteoglucanos, debido en parte a su complejidad. Comoquiera que sea, son componentes de la ECM con diversas funciones biológicas importantes, y están involucrados en diversos procesos morbosos, de manera que el interés por ellos está aumentando con rapidez.
+++
La biosíntesis de glucosaminoglucanos incluye fijación a proteínas centrales, alargamiento de cadena y terminación de cadena
+++
Fijación a proteínas centrales
++
El enlace entre GAG y sus proteínas centrales regularmente es de uno de tres tipos:
++
Un enlace O-glucosídico entre xilosa (Xil) y Ser, un enlace que es singular para los proteoglucanos. Este enlace se forma mediante transferencia de un residuo Xil hacia Ser desde la UDP-xilosa. A continuación se añaden dos residuos de Gal al residuo Xil, lo que forma un enlace trisacárido, Gal-Gal-Xil-Ser. El crecimiento de cadena adicional del GAG ocurre en la Gal terminal.
Se forma un enlace O-glucosídico entre GalNAc (N-acetilgalactosamina) y Ser (Tre) (figura 47-1A), presente en el queratán sulfato II. Este enlace se forma por medio de donación a Ser (o Tre) de un residuo GalNAc, que usa UDP-GalNAc como su donador.
Un enlace N-glucosilamina entre GlcNAc (N-acetilglucosamina) y el nitrógeno amino de Asn, como se encuentra en glucoproteínas N-enlazadas (figura 47-1B). Se cree que su síntesis comprende dolicol-P-Poligosacárido.
++
++
Las proteínas centrales se sintetizan en el retículo endoplásmico, y ahí también se forman al menos algunos de los enlaces anteriores. Casi todos estos últimos pasos en la biosíntesis de cadenas GAG y sus modificaciones subsiguientes suceden en el aparato de Golgi.
+++
Alargamiento de cadena
++
Azúcares nucleótido apropiados y glucosiltransferasas muy específicas ubicadas en el aparato de Golgi se emplean para sintetizar las cadenas de oligosacárido de GAG. Aquí parece aplicarse la relación “una enzima, un enlace”, como en el caso de ciertos tipos de enlaces que se encuentran en glucoproteínas. Los sistemas enzimáticos involucrados en el alargamiento de cadena tienen la capacidad de reproducción de GAG complejos con alta fidelidad.
+++
Terminación de cadena
++
Parece depender de 1) sulfación, de manera especial en ciertas posiciones de los azúcares, y 2) la progresión de la cadena de GAG en crecimiento en dirección contraria al sitio de la membrana donde ocurre catálisis.
+++
Modificaciones adicionales
++
Tras la formación de la cadena de GAG, suceden muchas modificaciones químicas, como la introducción de grupos sulfato, hacia GalNAc y otras porciones, y la epimerización de residuos GlcUA hacia IdUA. Las enzimas que catalizan la sulfación se designan sulfotransferasas y usan 3′-fosfoadenosina-5′-fosfosulfato (PAPS; sulfato activo) (figura 32-11) como el donador de sulfato. Estas enzimas localizadas en el aparato de Golgi son muy específicas, y distintas enzimas catalizan la sulfación en diferentes posiciones (p. ej., carbonos 2, 3, 4 y 6) en los azúcares aceptores. Una epimerasa cataliza conversiones de residuos glucuronil en iduronil.
+++
Diversos glucosaminoglucanos muestran diferencias de estructura y tienen distribuciones características
++
Los siete GAG antes nombrados difieren uno de otro en varias de las propiedades que siguen: composición de azúcar amino, composición de ácido urónico, enlaces entre estos componentes, longitud de cadena de los disacáridos, presencia o ausencia de grupos sulfato y sus posiciones de fijación a los azúcares constituyentes, naturaleza de las proteínas centrales a las cuales están fijos, naturaleza del enlace a proteína central, su distribución en tejidos y subcelular, y sus funciones biológicas.
++
Ahora se comentan de manera breve las estructuras (figura 48-8) y distribuciones de cada uno de los GAG. En el cuadro 48-6 se resumen las principales características de los siete GAG.
++
++
++
Consta de una cadena no ramificada de unidades de disacárido repetitivas que contienen GlcUA y GlcNAc. El ácido hialurónico está presente en bacterias, y se encuentra ampliamente distribuido entre diversos animales y tejidos, incluso el líquido sinovial, el cuerpo vítreo, cartílago, y tejidos conjuntivos laxos.
+++
Condroitín sulfatos (condroitín 4-sulfato y condroitín 6-sulfato)
++
Los proteoglucanos enlazados a condroitín sulfato por el enlace Xil-Ser O-glucosídico son componentes notorios del cartílago (véase más adelante). El disacárido repetitivo es similar al que se encuentra en el ácido hialurónico; y contiene GlcUA pero con GalNAc remplazando a GlcNAc. El GalNAc se sustituye con sulfato en su posición 4′ o 6′; aproximadamente un sulfato está presente por cada unidad de disacárido.
+++
Queratán sulfatos I y II
++
Los queratán sulfatos constan de unidades de disacárido Gal-GlcNAc repetitivas que contienen sulfato fijo a la posición 6′ de GlcNAc o en ocasiones de Gal. El tipo I es abundante en la córnea, y el tipo II se encuentra junto con el condroitín sulfato fijo al ácido hialurónico en el tejido conjuntivo laxo. Los tipos I y II tienen diferentes fijaciones a proteína (figura 48-8).
++
El disacárido repetitivo contiene glucosamina (GlcN) y uno u otro de los dos ácidos urónicos (figura 48-9). Casi todos los aminoácidos de los residuos GlcN están N-sulfatados, pero algunos están acetilados. La GlcN también porta un sulfato fijo al carbono 6.
++
++
Alrededor de 90% de los residuos ácido urónico es IdUA. En un inicio, todos los ácidos urónicos son GlcUA, pero una 5′-epimerasa convierte alrededor de 90% de los residuos GlcUA en IdUA después de que se forma la cadena de polisacárido. La molécula de proteína del proteoglucano heparina es singular; consta de modo exclusivo de residuos serina y glicina. Cerca de dos terceras partes de los residuos serina contienen cadenas de GAG, por lo general de 5 a 15 kDa, pero a veces de tamaño considerablemente mayor. La heparina se encuentra en los gránulos de células cebadas y en el hígado, los pulmones y la piel.
++
Esta molécula se encuentra en muchas superficies celulares como un proteoglucano, y es extracelular. Contiene GlcN con menos N-sulfatos que la heparina y, al contrario de esta última, su ácido urónico predominante es GlcUA.
++
Esta sustancia se encuentra ampliamente distribuida en tejidos de animales. Su estructura es similar a la del condroitín sulfato, salvo porque en lugar de un GlcUA en el enlace β-1,3 a GalNAc, contiene un IdUA en un enlace α-1,3 a GalNAc. La formación del IdUA ocurre, al igual que en la heparina y el heparán sulfato, mediante 5′-epimerización de GlcUA. Dado que esto es regulado por el grado de sulfación, y puesto que la sulfación es incompleta, el dermatán sulfato contiene disacáridos tanto IdUA-GalNAc como GlcUA-GalNAc.
+++
Las deficiencias de enzimas que degradan glucosaminoglucanos ocasionan mucopolisacaridosis
++
Tanto las exoglucosidasas como las endoglucosidasas degradan GAG. Al igual que casi todas las otras biomoléculas, los GAG están sujetos a recambio; se sintetizan y se degradan. En tejidos de adulto, los GAG por lo general muestran recambio relativamente lento; su vida media es de días a semanas.
++
El entendimiento de las vías de degradación para el GAG, como en el caso de las glucoproteínas (cap. 47) y de los glucoesfingolípidos (cap. 24), se ha auxiliado mucho por la elucidación de las deficiencias enzimáticas específicas que suceden en determinados errores congénitos del metabolismo. Cuando están involucrados GAG, estos errores congénitos se denominan mucopolisacaridosis (cuadro 48-7).
++
++
Los GAG se degradan por medio de una batería de hidrolasas lisosómicas, las cuales incluyen ciertas endoglucosidasas, diversas exoglucosidasas y sulfatasas, que por lo general actúan en secuencia para degradar los diversos GAG. Varias de ellas se indican en el cuadro 48-7.
++
Las mucopolisacaridosis comparten un mecanismo causal (figura 48-10); por lo regular se heredan de una manera autosómica recesiva; los síndromes de Hurler y de Hunter tal vez son los más ampliamente estudiados. Ninguno es frecuente. El cuadro 48-8 resume las características generales de estas enfermedades y en el cuadro 48-9, las pruebas de laboratorio útiles en su diagnóstico. En algunos casos, se obtiene un antecedente familiar de una mucopolisacaridosis.
++
++
++
++
El término “mucolipidosis” se introdujo para denotar enfermedades que combinaron características comunes tanto a mucopolisacaridosis como a esfingolipidosis (cap. 24). En el cuadro 48-7 se listan tres mucolipidosis. En la sialidosis (mucolipidosis I, ML-I), diversos oligosacáridos derivados de glucoproteínas y ciertos gangliósidos pueden acumularse en los tejidos. En el capítulo 47 se describen la enfermedad de célula I (ML-II) y la seudopolidistrofia de Hurler (ML-III). El término “mucolipidosis” se retiene porque aún está en uso clínico difundido, pero es inapropiado para estas dos últimas enfermedades dado que su mecanismo causal comprende ubicación inadecuada de ciertas enzimas lisosómicas. En el capítulo 47 también se describen los defectos genéticos del catabolismo de las cadenas de oligosacárido de glucoproteínas (p. ej., manosidosis, fucosidosis). Casi todos estos defectos se caracterizan por excreción incrementada de diversos fragmentos de glucoproteínas en la orina, que se acumulan debido al bloqueo metabólico, como en el caso de las mucolipidosis.
++
La hialuronidasa es una enzima importante involucrada en el catabolismo tanto del ácido hialurónico como del condroitín sulfato. Es una endoglucosidasa ampliamente distribuida que divide enlaces hexosaminídicos. A partir del ácido hialurónico, la enzima generará un tetrasacárido, con la estructura GlcUAβ-1,3-GlcNAc-β-1,4)2, que se puede degradar más mediante una β-glucuronidasa y β-N-acetilhexosaminidasa. Sorprende que al parecer sólo se ha reportado un caso de una deficiencia genética manifiesta de esta enzima (OMIM 601492).
+++
Los proteoglucanos tienen muchas funciones
++
Como se indicó, los proteoglucanos son moléculas notoriamente complejas, y se encuentran en cada tejido del organismo, principalmente en la ECM o “sustancia fundamental”. Ahí, se asocian entre sí y con los otros componentes estructurales principales de la matriz, colágeno y elastina, de modos bastante específicos. Algunos proteoglucanos se unen a colágeno y otros a elastina. Estas interacciones tienen importancia en la determinación de la organización estructural de la matriz. Algunos proteoglucanos (p. ej., decorina) también pueden unirse a factores de crecimiento como TGF-β, y modular sus efectos sobre las células. Además, algunos de ellos interactúan con ciertas proteínas adhesivas como fibronectina y laminina (véase antes), que también se encuentran en la matriz. Los GAG presentes en los proteoglucanos son polianiones y, en consecuencia, se unen a policationes y cationes como Na+ y K+. Esta última capacidad atrae agua por medio de presión osmótica hacia la matriz extracelular, y contribuye a su turgencia. Los GAG también forman gel a concentraciones relativamente bajas. Debido a la naturaleza extendida larga de las cadenas de polisacárido de GAG, y su capacidad para formar gel, los proteoglucanos pueden actuar como tamiz, al restringir el paso de macromoléculas grandes hacia la ECM pero permitir difusión relativamente libre de moléculas pequeñas. De nuevo, debido a sus estructuras extendidas y los enormes agregados macromoleculares que suelen formar, ocupan un volumen grande de la matriz en comparación con las proteínas.
+++
Algunas funciones de GAG y proteoglucanos específicos
++
La concentración del ácido hialurónico es particularmente alta en tejidos embrionarios, y se cree que tiene importancia en permitir la migración celular durante la morfogénesis y la reparación de heridas. Su capacidad para atraer agua hacia la matriz extracelular y, así, “aflojarla” quizá tenga importancia a este respecto. Las concentraciones altas de ácido hialurónico y condroitín sulfatos presentes en el cartílago contribuyen a su compresibilidad (véase más adelante).
++
Los condroitín sulfatos están localizados en sitios de calcificación en el hueso endocondral y se encuentran también en el cartílago. Asimismo, están situados dentro de ciertas neuronas, y tal vez proporcionen una estructura endoesquelética, lo que ayuda a mantener su forma.
++
Tanto el queratán sulfato I como el dermatán sulfato están presentes en la córnea. Yacen entre fibrillas de colágeno, y desempeñan una función crucial en la transparencia de la córnea. Los cambios de la composición de proteoglucano que se encuentran en cicatrices corneales desaparecen una vez que sana la córnea. La presencia de dermatán sulfato en la esclerótica quizá también tenga una participación en el mantenimiento de la forma general del ojo. El queratán sulfato I también se encuentra en el cartílago.
++
La heparina es un importante anticoagulante. Se une con los factores IX y XI, pero su interacción más importante es con la antitrombina plasmática (cap. 51). La heparina también puede unirse de manera específica a la lipoproteína lipasa presente en las paredes de los capilares, lo que se traduce en una liberación de esta enzima hacia la circulación.
++
Ciertos proteoglucanos (p. ej., heparán sulfato) se relacionan con la membrana plasmática de las células; sus proteínas centrales en realidad abarcan esa membrana. En ella pueden actuar como receptores y participar en la mediación del crecimiento celular y la comunicación entre una célula y otra. La fijación de células a su sustrato en cultivo está mediada al menos en parte por el heparán sulfato. Este proteoglucano también se encuentra en la membrana basal de los riñones junto con el colágeno tipo IV y la laminina (véase antes), donde desempeña una importante función en la determinación de la selectividad de carga de la filtración glomerular.
++
Los proteoglucanos también se encuentran en sitios intracelulares, como el núcleo; no se ha dilucidado su función en este organelo. Están presentes en algunos gránulos de almacenamiento o secretorios, como los gránulos cromafines de la médula suprarrenal. Se ha postulado que participan en liberación del contenido de esos gránulos. El cuadro 48-10 resume las diversas funciones de los GAG.
++
+++
Vínculos con enfermedades importantes y con el envejecimiento
++
El ácido hialurónico puede tener importancia en permitir que las células tumorales migren a través de la ECM. Dichas células pueden inducir a los fibroblastos para que sinteticen cantidades muy aumentadas de este GAG, lo que tal vez facilita su propia diseminación. Algunas células tumorales tienen menos heparán sulfato en su superficie, y esto puede participar en la falta de adhesividad que muestran estas células.
++
La íntima de la pared arterial contiene proteoglucanos ácido hialurónico y condroitín sulfato, dermatán sulfato, y heparán sulfato. De estos proteoglucanos, el dermatán sulfato se une a lipoproteínas de baja densidad plasmáticas. Más aún, el dermatán sulfato parece ser el principal GAG sintetizado por las células de músculo liso arterial. Puesto que son estas células las que proliferan en lesiones ateroscleróticas en arterias, el dermatán sulfato quizá tenga una función importante en la formación de la placa aterosclerótica.
++
En diversos tipos de artritis, los proteoglucanos pueden actuar como autoantígenos, lo que contribuye a las características patológicas de estas enfermedades. La cantidad de condroitín sulfato en el cartílago disminuye con la edad, mientras que las cantidades de queratán sulfato y ácido hialurónico se incrementan. Estos cambios pueden contribuir a la aparición de osteoartritis, al igual que la actividad aumentada de la enzima agrecanasa, que actúa para degradar el agrecano. Con el envejecimiento también se observan cambios de las cantidades de ciertos GAG en la piel y ayudan a explicar los cambios característicos que se notan en este órgano en ancianos.
++
Una interesante nueva fase de la investigación sobre proteoglucanos se está abriendo con los datos de que las mutaciones que afectan proteoglucanos individuales o las enzimas necesarias para su síntesis alteran la regulación de vías emisoras de señal específicas en Drosophila y Caenorhabditis elegans, lo que afecta el desarrollo; parece probable que existen efectos similares en ratones y seres humanos.