+++
EL CUERPO COMO “SOLUCIÓN” ORGANIZADA
++
Las células que constituyen el cuerpo de los animales multicelulares (excepto las formas de vida más simple), ya sean acuáticos o terrestres, existen en un “mar interno” denominado líquido extracelular (ECF, extracellular fluid) delimitado por el aparato integumentario del animal. De este líquido, las células captan O2 y nutrimentos y hacia él vierten sus productos de desecho metabólico. El ECF se encuentra más diluido que el agua de mar de hoy en día, pero su composición simula estrechamente la que se encontraba en los océanos primordiales en los cuales, se supone, se originó la vida.
++
En animales con aparatos vasculares cerrados, el ECF se divide en líquido intersticial y plasma sanguíneo circulante y el líquido linfático que vincula los dos espacios mencionados. El plasma y los elementos celulares de la sangre, en particular los eritrocitos, son los que ocupan el árbol vascular y en conjunto constituyen el volumen sanguíneo total. El líquido intersticial es la parte del ECF que está por fuera de los sistemas vascular y linfático y que baña a las células. En promedio, la tercera parte del agua corporal total es extracelular y los dos tercios restantes son intracelulares (líquido intracelular). La distribución inapropiada de los líquidos corporales en compartimientos ajenos origina edema (Recuadro clínico 1-1). En el varón adulto joven promedio, 18% del peso corporal está constituido por proteínas y sustancias relacionadas, 7% se compone de minerales y 15% corresponde a grasa. El restante 60% es agua. La distribución del agua se muestra en la figura 1-1A.
++
++
++
RECUADRO CLÍNICO 1-1 Edema
El edema es la acumulación de líquidos corporales dentro de los tejidos y dicho aumento depende de una mayor fuga desde la sangre, menor “extracción” por parte del sistema linfático o ambos factores de conjunto. El edema suele observarse en los pies, tobillos y piernas, pero también puede acumularse en muchas zonas corporales como consecuencia de enfermedades que incluyen las del corazón, pulmones, hígado, riñones o glándula tiroides.
AVANCES TERAPÉUTICOS El mejor tratamiento para el edema consiste en corregir el trastorno de fondo, razón por la cual el primer paso en el tratamiento es diagnosticar la causa del edema. Entre los tratamientos más generales están restringir el sodio de los alimentos para llevar al mínimo la retención de líquidos y utilizar los diuréticos apropiados.
++
El componente intracelular del agua corporal constituye casi 40% del peso del cuerpo y el componente extracelular, cerca de 20%. Casi 25% del componente extracelular está en el sistema vascular (plasma = 5% del peso corporal) y 75% se encuentra fuera de los vasos sanguíneos (líquido intersticial = 15% del peso corporal). Todo el volumen sanguíneo representa casi 8% del peso corporal total. El flujo entre estos espacios está estrictamente regulado.
+++
UNIDADES PARA LA MEDICIÓN DE LA CONCENTRACIÓN DE SOLUTOS
++
Para considerar los efectos de varias sustancias con importancia fisiológica y las interacciones entre ellas, el número de moléculas, cargas eléctricas o partículas de una sustancia por unidad de volumen de un líquido corporal particular a menudo son más significativas que el simple peso de la sustancia por unidad de volumen. Por esta razón, las concentraciones fisiológicas con frecuencia se expresan en términos de moles, equivalentes, u osmoles.
++
Un mol es el peso molecular de una sustancia en gramos, es decir, el peso molecular de una sustancia expresada en gramos. Cada mol consta de 6 × 1023 moléculas. El milimol (mmol) consta de 1/1 000 de 1 mol en tanto que el micromol (µmol) representa 1/1 000 000 de un mol. Así, 1 mol de NaCl = 23 g + 35.5 g = 58.5 g y 1 mmol = 58.5 mg. El mol es la unidad estándar para expresar la cantidad de sustancias en el Sistema Internacional de Unidades (SI).
++
El peso molecular de una sustancia es el cociente de la masa de una molécula de la sustancia con la masa de un doceavo de la masa de un átomo de carbono-12. La masa molecular es un cociente y por tanto es adimensional. Un dalton (Da) es la unidad de masa que equivale a un doceavo de la masa de un átomo de carbono-12. Un kilodalton (kDa = 1 000 Da) es una unidad útil para expresar la masa molecular de las proteínas. Así, por ejemplo, se puede hablar de una proteína de 64 kDa o establecer que la masa molecular de una proteína es de 64 000 Da. No obstante, como el peso molecular es un cociente adimensional es incorrecto decir que el peso molecular de la proteína es de 64 kDa.
++
El concepto de equivalencia eléctrica es importante en fisiología porque muchos de los solutos en el cuerpo se encuentran en forma de partículas cargadas. Un equivalente (eq) es 1 mol de una sustancia ionizada dividida entre su valencia. Un mol de NaCl se disocia en 1 eq de Na+ y 1 eq de Cl−. Un equivalente de Na+ = 23 g, pero 1 de Ca2+ = 40 g/2 = 20 g. Un miliequivalente (meq) corresponde a 1/1 000 de 1 equivalente.
++
La equivalencia eléctrica no es necesariamente la misma que la equivalencia química. Un gramo equivalente es el peso de una sustancia que es químicamente equivalente a 8.000 g de oxígeno. La normalidad (N) de una solución es el número de gramos equivalentes en 1 L. Una solución al 1 N de ácido clorhídrico contiene tanto H+ (1 g) como Cl- (35.5 g) equivalentes = (1 g + 35.5 g)/L = 36.5 g/L.
+++
AGUA, ELECTRÓLITOS Y EQUILIBRIO ACIDOBÁSICO
++
La molécula de agua (H2O) es un solvente ideal para las reacciones fisiológicas. El agua tiene un momento de dipolo en el cual el oxígeno desplaza ligeramente los electrones de los átomos de hidrógeno y crea una separación de cargas que lo convierte en una molécula polar, lo que permite que el agua disuelva diversos átomos y moléculas con carga. También permite que las moléculas de H2O interactúen con otras moléculas de agua a través de puentes de hidrógeno. La red de puentes de hidrógeno formada en el agua le da diversas propiedades fundamentales en la fisiología: 1) el agua tiene una tensión superficial elevada, 2) el agua posee una gran capacidad calórica y necesita temperaturas elevadas para la vaporización y 3) el agua tiene una constante dieléctrica alta. En términos simples, el agua es un líquido biológico excelente que actúa como soluto al tiempo que proporciona una transferencia óptima de calor y de conducción de corriente.
++
Los electrólitos (p. ej., NaCl) son moléculas que se disocian en el agua a sus equivalentes catiónico (Na+) y aniónico (Cl-). Debido a la carga neta en las moléculas de agua, estos electrólitos no tienden a unirse nuevamente en el agua. Existen muchos electrólitos importantes en fisiología, entre los que resaltan Na+, K+, Ca2+, Mg2+, Cl- y HCO3-. Es importante notar que los electrólitos y otros compuestos con carga (p. ej., proteínas) tienen distribución heterogénea en los líquidos corporales (fig. 1-1B). Estas diferencias desempeñan una función importante en la fisiología.
+++
pH Y ACTIVIDAD AMORTIGUADORA
++
La conservación de una concentración estable de iones hidrógeno ([H+]) en los líquidos corporales es esencial para la vida. El pH de una solución se define como el logaritmo inverso de base 10 de la concentración de H+ ([H+]), es decir, el logaritmo negativo de [H+]. El pH del agua a 25°C, en la cual los iones de H+ y OH- se encuentran en las mismas cantidades, es de 7.0 (fig. 1-2). Por cada unidad de pH por debajo de 7.0, la concentración de [H+] se incrementa 10 veces; por cada unidad de pH por arriba de 7.0, disminuye 10 veces. El plasma de los individuos sanos tiene un pH ligeramente alcalino, que se mantiene en un margen estrecho de 7.35 a 7.45 (Recuadro clínico 1-2). Por el contrario, el pH gástrico puede ser bastante ácido (en el orden de 3.0) y las secreciones pancreáticas suelen ser muy alcalinas (con pH cercano a 8.0). La actividad enzimática y la estructura proteínica con frecuencia son sensibles al pH y en cualquier compartimiento corporal o celular la conservación del pH permite la eficiencia máxima de enzimas y proteínas.
++
RECUADRO CLÍNICO 1-2 Trastornos acidobásicos
Surgen situaciones de exceso de ácido (acidosis) o de compuestos alcalinos (alcalosis) cuando el pH de la sangre se sitúa por fuera de sus límites normales (que son 7.35-7.45). Los cambios en cuestión disminuyen el aporte de O2 y la eliminación de CO2 de los tejidos. Se conocen muy diversas situaciones y enfermedades que interfieren en el control del pH en el organismo y hacen que el pH de la sangre se sitúe fuera de sus límites normales. Los trastornos acidobásicos que provienen de la función respiratoria, al grado de que se altera la concentración de CO2, reciben los nombres de acidosis y alcalosis respiratorias. Los trastornos fuera del aparato respiratorio que modifican la concentración de HCO3- han sido denominados acidosis y alcalosis metabólicas. Las dos alteraciones recién mencionadas provienen de perturbaciones electrolíticas, vómito o diarrea graves, ingestión de algunos fármacos, drogas y toxinas, nefropatías y enfermedades que afectan el metabolismo normal (como la diabetes).
AVANCES TERAPÉUTICOS El tratamiento apropiado de los trastornos acidobásicos depende de la identificación precisa de las alteraciones causales básicas; lo anterior es muy válido especialmente cuando surgen alteraciones mixtas o combinadas. En el comienzo habrá que emprender el tratamiento de la acidosis respiratoria al restablecer la ventilación, en tanto que las medidas para corregir la alcalosis respiratoria se orientan a la causa de fondo. En forma típica se utilizan soluciones de bicarbonato para tratar la acidosis metabólica aguda. La dosis adecuada de cloruro de sodio restaura el equilibrio acidobásico a lo normal, en cuestión de días en el caso de sujetos con alcalosis metabólica que responde a la administración de cloruro, mientras la que es resistente a la administración de este ion obliga a corregir la causa primaria.
++
++
++
Las moléculas que actúan como donadores de H+ en las soluciones se consideran ácidas, en tanto que aquellas que tienden a eliminar H+ de las soluciones se consideran alcalinas. Los ácidos fuertes (p. ej., HCl) o bases fuertes (p. ej., NaOH) se disocian por completo en el agua y por lo tanto pueden cambiar más la concentración de [H+] en solución. En compuestos fisiológicos, la mayor parte de los ácidos o bases se consideran “débiles”, es decir, contribuyen con relativamente pocos H+ o eliminan pocos H+ de la solución. El pH corporal se estabiliza por la capacidad amortiguadora de los líquidos corporales. Un amortiguador es una sustancia que tiene la capacidad de enlazar o liberar H+ en una solución, con lo que se mantiene el pH relativamente constante pese a la adición de cantidades considerables de compuestos ácidos o alcalinos. Existe un gran número de amortiguadores que actúan en los líquidos biológicos en un momento dado. Todos los compuestos amortiguadores acoplados en una solución homogénea se encuentran en equilibrio con la misma concentración de iones hidrógeno, lo que se conoce como principio isohídrico. Una consecuencia de este principio es que al analizar un sistema amortiguador aislado, se puede comprender en gran medida la forma en que se comportan todos los amortiguadores biológicos en ese sistema.
++
Cuando se agregan ácidos a una solución hay disociación de algunos de los componentes ácidos (HA) en su fracción de protón (H+) y ácido libre (A−). Esto con frecuencia se escribe como una ecuación:
++
++
Según la ley de acción de masas, en términos matemáticos se puede definir una relación para la disociación como:
++
++
donde Ka es una constante y los corchetes representan las concentraciones de los compuestos individuales. En términos sencillos, el producto de la concentración de protones ([H+]) multiplicado por la concentración de ácido libre ([A−]) dividido entre la concentración de ácido no disociado ([HA]) es una constante definida (K). Esto puede expresarse de la siguiente manera:
++
++
Si se añade el logaritmo a cada lado de la ecuación:
++
++
Ambos lados de la ecuación se multiplican por −1 con lo que se obtiene:
++
++
Esto puede escribirse en una forma más convencional que se conoce como ecuación de Henderson Hasselbalch:
++
++
Esta ecuación relativamente simple es de gran importancia. Un aspecto que se puede notar a simple vista es que la capacidad amortiguadora de un ácido débil en particular es mejor cuando su pKa es igual al pH de la solución, o cuando:
++
++
Se pueden aplicar ecuaciones similares a las bases débiles. Un amortiguador importante en el cuerpo es el ácido carbónico, el cual es un ácido débil y que se disocia sólo en parte en H+ y bicarbonato:
++
++
Si se añade H+ a la solución de ácido carbónico, el equilibrio se inclina hacia la izquierda y la mayor parte del H+ añadido se elimina de la solución. Si se añade OH−, se combinan H+ y OH– con lo que se elimina H+ de la solución. Sin embargo, la disminución se contraresta por una mayor disociación de H2CO3 y se disminuye la reducción en la concentración de H+. Una característica particular del bicarbonato es la relación entre su capacidad amortiguadora y la capacidad de los pulmones para eliminar dióxido de carbono del cuerpo. Otros amortiguadores de importancia biológica incluyen los fosfatos y las proteínas.
++
La difusión es el proceso por el cual se expande un gas o una sustancia en una solución, debido al movimiento de sus partículas, para ocupar todo el volumen disponible. Las partículas (moléculas o átomos) de una sustancia disueltas en un solvente se encuentran en movimiento aleatorio continuo. Una partícula tiene la misma posibilidad de desplazarse hacia el interior o al exterior del área en la cual se encuentra en altas concentraciones. No obstante, como hay más partículas en el área de alta concentración, el número total de partículas que se desplazan a áreas de baja concentración es mayor; es decir, existe un flujo neto de partículas de soluto de las áreas de alta concentración a las de baja concentración. El tiempo necesario para el equilibrio por medio de difusión es proporcional al cuadrado de la distancia de difusión. La magnitud de la tendencia de difusión de una región a otra es directamente proporcional al área a través de la cual tendrá lugar la difusión y al gradiente de concentración o gradiente químico, el cual es la diferencia de la concentración de la sustancia que se difunde dividida entre el grosor de la capa a través de la cual ocurre la difusión (ley de la difusión de Fick). Así,
++
++
en donde J es el cociente neto de difusión, D es el coeficiente de difusión, A es el área y ∆c/∆x es el gradiente de concentración. El signo negativo indica la dirección de la difusión. Cuando se considera el movimiento de moléculas de mayor a menor concentraciones, se obtiene un valor negativo de ∆c/∆x, de forma que al multiplicarlo por −DA se obtiene un valor positivo. La permeabilidad de las interfaces o límites a través de los cuales se produce la difusión en el organismo es variable, pero la difusión sigue siendo una gran fuerza que modifica la distribución de agua y de solutos.
++
Cuando una sustancia se disuelve en agua, la concentración de moléculas de agua en la solución es inferior al que se encuentra en el agua pura, porque la adición de soluto ocasiona que dicha solución ocupe un mayor volumen en comparación con el agua sola. Si la solución se coloca en un lado de una membrana que es permeable al agua pero no al soluto y se coloca un volumen igual de agua del otro lado, las moléculas de agua se difunden hacia un menor gradiente de concentración (químico) en la solución (fig. 1-3). Este proceso se denomina ósmosis y consiste en la difusión de moléculas de solvente hacia la región en la cual hay concentraciones más elevadas del soluto para el cual la membrana es impermeable. Este es un importante factor en los procesos fisiológicos. La tendencia para el desplazamiento de moléculas de solvente a la región con mayor concentración de solutos puede evitarse al aplicar presión a la solución más concentrada. La presión necesaria para evitar la migración de solvente es la presión osmótica de la solución.
++
++
La presión osmótica (al igual que la disminución de la presión del vapor, la disminución del punto de congelación y la elevación del punto de ebullición) depende del número más que del tipo de partículas en una solución; esto constituye una propiedad coligativa fundamental de las soluciones. En una solución ideal la presión osmótica (P) se relaciona con la temperatura y el volumen en la misma forma que la presión de un gas:
++
++
donde n es el número de partículas, R es la constante del gas, T es la temperatura absoluta y V es el volumen. Si T se mantiene constante, es claro que la presión osmótica es proporcional al número de partículas en la solución por unidad de volumen. Por ello, la concentración de partículas con actividad osmótica suele ser expresada en términos de osmoles. Un osmol (osm) equivale al peso molecular en gramos de una sustancia dividida entre el número de partículas en movimiento libre que cada molécula libera a la solución. Para las soluciones biológicas, más a menudo se utilizan los miliosmoles (mosm; 1/1 000 de 1 osm).
++
Si el soluto es un compuesto no ionizante, como la glucosa, la presión osmótica es una función del número de moléculas de glucosa presentes. Si el soluto se ioniza y forma una solución ideal, cada ion es una partícula con actividad osmótica. Por ejemplo, el NaCl podría disociarse en iones de Na+ y Cl−, de forma que cada mol en la solución proporcionaría 2 osm. Un mol de Na2SO4 se disociaría en Na+, Na+ y SO42− originando 3 osm. Sin embargo, los líquidos corporales no son soluciones ideales y aunque la disociación de los electrólitos fuertes suele ser completa, el número de partículas libres que ejercen un efecto osmótico es reducido a causa de las interacciones entre los iones. Por tanto, la capacidad osmótica está determinada más por la concentración eficaz (actividad) que por el número de equivalentes de un electrólito en una solución. Esto explica, por ejemplo, que 1 mmol de NaCl por litro en los líquidos corporales contribuya con un poco menos de 2 mosm de partículas con actividad osmótica por litro. Mientras más concentrada sea la solución, mayor será la diferencia para ser una solución ideal.
++
La concentración osmolal de una sustancia en un líquido se mide por el grado en el cual disminuye el punto de congelación, en donde 1 mol de una solución ideal disminuye el punto de congelación 1.86°C. El número de miliosmoles por litro en una solución equivale a una disminución del punto de congelación dividido entre 0.00186. La osmolaridad es el número de osmoles por litro de solución (p. ej., plasma), en tanto que la osmolalidad es el número de osmoles por kilogramo de solvente. Por tanto, la osmolaridad se ve afectada por el volumen de diversos solutos en la solución y por la temperatura, en tanto que la osmolalidad no se afecta. Las sustancias con actividad osmótica en el cuerpo se disuelven en agua y la densidad de ésta es de 1, de forma que las concentraciones osmolales pueden expresarse en términos de osmoles por litro (osm/L) de agua. En esta obra, se consideran las concentraciones osmolales más que las osmolares y la osmolalidad se expresa en términos de miliosmoles por litro (de agua).
++
Obsérvese que aunque una solución homogénea contenga partículas con actividad osmótica y pueda decirse que tiene presión osmótica, sólo puede ejercer una presión osmótica cuando se encuentra en contacto con otra solución a través de una membrana permeable al solvente pero no al soluto.
+++
CONCENTRACIÓN OSMOLAL DEL PLASMA: TONICIDAD
++
El punto de congelación del plasma humano normal es en promedio −0.54°C, lo que corresponde a una concentración osmolal en el plasma de 290 mosm/L. Esto equivale a una presión osmótica en com-paración con el agua pura de 7.3 atm. Es posible esperar que la osmolalidad sea mayor que esta cifra, porque la suma de todos los equivalentes de cationes y aniones en el plasma es mayor de 300. Esta cifra no es tan alta porque el plasma no es una solución ideal y las interacciones iónicas reducen el número de partículas libres para ejercer el efecto osmótico. Con excepción de los casos en los que ha habido tiempo insuficiente después de un cambio súbito en la composición para que ocurra el equilibrio, todos los compartimientos hídricos del cuerpo se encuentran en equilibrio osmótico (o muy cerca del mismo). El término tonicidad se utiliza para describir la osmolalidad de una solución con respecto al plasma. Las soluciones que tienen la misma osmolalidad que el plasma se denominan isotónicas; las de mayor osmolalidad se denominan hipertónicas en tanto que aquellas con menores cifras de osmolalidad son hipotónicas. Todas las soluciones que al inicio son isoosmóticas con el plasma (es decir, todas aquellas que tienen la misma presión osmótica o depresión del punto de congelamiento que el plasma) permanecerían isotónicas de no ser por el hecho de que algunos solutos se difunden hacia las células y otros se metabolizan. Así, una solución salina al 0.9% permanece isotónica porque no existe desplazamiento neto de partículas con actividad osmótica de la solución hacia las células y las partículas no se metabolizan. Por otra parte, una solución glucosada al 5% es isotónica al momento en el que se administra por vía intravenosa, pero la glucosa sufre metabolismo, de forma que el efecto neto es la aplicación de una solución hipotónica.
++
Es importante notar las contribuciones relativas de diversos componentes del plasma a la concentración osmolal total del plasma. De los 290 mosm presentes en cada litro de plasma normal, casi 20 mosm corresponden a Na+ y aniones acompañantes, sobre todo Cl− y HCO3−. Otros cationes y aniones contribuyen relativamente poco. Aunque la concentración de proteínas plasmáticas es muy alta cuando se expresa en g/L, por lo común contribuyen con menos de 2 mosm/L por sus elevados pesos moleculares. Los principales solutos no electrolíticos del plasma son glucosa y urea, que en condiciones habituales se encuentran en equilibrio con las células. Su participación con la osmolalidad suele ser cercana a 5 mosm/L pero puede ser mucho mayor en estados de hiperglucemia o uremia. La osmolalidad plasmática total es importante para valorar la deshidratación, hidratación excesiva y otras anomalías de líquidos y electrólitos (Recuadro clínico 1-3).
++
RECUADRO CLÍNICO 1-3 Osmolalidad plasmática y enfermedad
A diferencia de las células vegetales, que tienen paredes celulares rígidas, las membranas celulares de animales son flexibles. Por tanto, las células animales se expanden cuando se exponen a un líquido extracelular hipotónico y reducen su tamaño cuando se exponen a líquido extracelular hipertónico. Las células contienen conductos iónicos y bombas que pueden ser activadas por cambios moderados en la osmolalidad; sin embargo pueden ser superadas bajo ciertas situaciones patológicas. La hiperosmolalidad puede causar coma hiperosmolar. Por la participación predominante de los principales solutos y la desviación que tiene el plasma con respecto a una solución ideal, es posible aproximar en términos generales la osmolalidad plasmática con una variante de unos mosm/L al utilizar la siguiente fórmula, en la cual las constantes convierten las unidades clínicas a mmol de soluto por litro:
El BUN es el nitrógeno ureico sanguíneo. La fórmula también es útil para detectar concentraciones anormalmente elevadas de otros solutos. Una osmolalidad plasmática observada (medida por disminución del punto de congelación) que excede en gran medida el valor predicho con esta fórmula probablemente indica la presencia de sustancias extrañas como etanol, ma-nitol (en ocasiones administrado para reducir el volumen de las células con edema por medios osmóticos) o venenos como etilenglicol (componente del anticongelante para automóviles) o metanol (de combustible alterno para automóviles).
++
++
Algunos ácidos y bases débiles son muy solubles en la membrana celular en su forma no disociada, mientras que no pueden atravesar la membrana en su forma con carga (es decir, en la forma disociada). En consecuencia, si las moléculas de una sustancia no disociada se difunden de uno a otro lado de la membrana y después se disocian, hay un movimiento neto apreciable de la sustancia no disociada de un lado de la membrana al otro. Este fenómeno se conoce como difusión no iónica.
++
Cuando un ion en un lado de la membrana no se puede difundir a través de la misma, la distribución de otros iones para los cuales la membrana es permeable se ve afectada en una forma predecible. Por ejemplo, la carga negativa de un anión no difusible dificulta la difusión de cationes difusibles y favorece la difusión de aniones difusibles. Considérese la siguiente situación,
++
++
en la cual la membrana (m) entre los compartimientos X y Y es impermeable a las proteínas con carga (Prot−) pero es permeable a K+ y Cl−. Asumiendo que la concentración de aniones y cationes a ambos lados de la membrana sea igual al inicio, el Cl− se difunde siguiendo su gradiente de concentración de Y a X en tanto que K+ se desplaza con el Cl− de carga negativa porque posee la carga opuesta. Por tanto
++
++
++
++
esto es, se encuentran más partículas con actividad osmótica en el lado X que en el lado Y.
++
Donnan y Gibbs mostraron que en presencia de un ion no difusible, los iones difusibles se distribuyen de forma tal que el equilibrio entre sus concentraciones sea igual:
++
++
++
++
Esto se conoce como ecuación de Gibbs-Donnan, la cual se aplica para cualquier par de cationes y aniones de la misma valencia.
++
El efecto de Donnan sobre la distribución de iones tiene tres efectos en el cuerpo que se mencionan a continuación y se revisan más adelante. En primer lugar, por la presencia de proteínas con carga (Prot−) en las células, hay más partículas con actividad osmótica en las células que en el líquido intersticial y como las células animales tienen paredes celulares flexibles, la ósmosis podría favorecer su hinchazón y eventual rotura si no fuera porque la Na, K,-ATPasa bombea iones de vuelta hacia el exterior de la célula. De esta manera, el volumen y la presión normal de la célula dependen de la Na, K-ATPasa. En segundo lugar, como en condiciones de equilibrio la distribución de los iones que pasan a través de la membrana (m en el ejemplo utilizado) es asimétrica, existe una diferencia eléctrica a ambos lados de la membrana cuya magnitud puede determinarse por medio de la ecuación de Nernst. En el ejemplo mostrado, el lado X tendrá carga negativa con respecto al lado Y. Las cargas se alinean a lo largo de la membrana, con el gradiente de concentración para Cl– exactamente equilibrado por el gradiente eléctrico dirigido de manera opuesta y lo mismo ocurre para el K+. En tercer lugar, como hay más proteínas en el plasma que en el líquido intersticial, hay un efecto de Donnan sobre el desplazamiento de iones a través de la pared capilar.
+++
FUERZAS QUE ACTÚAN SOBRE LOS IONES
++
Las fuerzas que actúan a través de la membrana celular sobre cada ion pueden analizarse por medios matemáticos. Los iones cloruro (Cl–) se encuentran presentes en mayores concentraciones en el líquido extracelular que en el interior de la célula y tienden a difundirse siguiendo su gradiente de concentración hacia el interior de la célula. El interior de la célula es negativo con respecto al exterior y los iones cloruro son desplazados hacia fuera de las células siguiendo su gradiente eléctrico. Se alcanza un estado de equilibrio entre la entrada y la salida de Cl–. Se denomina potencial de equilibrio al potencial de membrana en el cual existe este equilibrio. Su magnitud puede calcularse con la ecuación de Nernst en la siguiente forma:
++
++
++
ECl = potencial de equilibrio para Cl−
R = constante de gas
T = temperatura absoluta
F = Faradio (número de culombios por mol de carga)
ZCl = valencia de Cl− (−1)
[Clo−] = concentración de Cl− fuera de la célula
[Cli−] = concentración de Cl− en el interior de la célula
++
La conversión del logaritmo natural al logaritmo de base 10 y la sustitución de algunas de las constantes con valores numéricos con temperatura de 37°C da origen a la siguiente ecuación:
++
++
Nótese que al convertir a la expresión simplificada el cociente de la concentración se invirtió debido a que se eliminó la valencia −1 de la expresión.
++
El potencial de equilibrio para Cl− (ECl) en la neurona espinal de los mamíferos, calculado a partir de los valores estándar que se presentan en el cuadro 1-1, es de −70 mV, un valor idéntico al potencial de membrana medido en reposo (−70 mV). Por lo tanto, no se necesitan fuerzas adicionales a las ya representadas por los gradientes químico y eléctrico para explicar la distribución de Cl− a través de la membrana.
++
Puede calcularse un potencial de equilibrio similar para K+ (EK; de nuevo a 37°C):
++
++
++
EK = potencial de equilibrio para K+
ZK = valencia de K+ (+1)
[Ko+] = concentración de K+ fuera de la célula
[Ko+] = concentración de K+ en el interior de la célula R, T y F igual que en la ecuación anterior
++
En este caso, el gradiente de concentración se dirige hacia afuera y el gradiente eléctrico hacia el interior de la célula. En las neuronas motoras espinales de los mamíferos, el EK es de −90 mV (cuadro 1-1). Como el potencial de membrana en reposo es −70 mV, hay más K+ en las neuronas de lo que puede explicarse por los gradientes eléctricos y químicos.
++
La situación para el Na+ es muy diferente a la del K+ y el Cl−. La dirección del gradiente químico de Na+ es hacia el interior de la célula, el área donde se encuentra en menor concentración y el gradiente eléctrico sigue la misma dirección. El valor de ENa es de +60 mV (cuadro 1-1). Debido a que EK y ENa no son iguales al potencial de membrana, se esperaría que la célula gradualmente ganara Na+ y perdiera K+ si solamente las fuerzas químicas y eléctricas actuaran a través de la membrana. Sin embargo, la concentración intracelular de Na+ y K+ permanece constante por la permeabilidad selectiva y por la acción de la Na, K-ATPasa que transporta en forma activa Na+ hacia el exterior de la célula y K+ hacia el interior de la misma (en contra de su respectivo gradiente electroquímico).
+++
ORIGEN DEL POTENCIAL DE MEMBRANA
++
La distribución de iones a través de la membrana celular y la naturaleza de esta membrana explican el potencial de membrana. El gradiente de concentración para el K+ facilita su desplazamiento hacia afuera de la célula a través de los conductos de K+, pero su gradiente eléctrico sigue la dirección opuesta (hacia el interior de la célula). En consecuencia, se alcanza un equilibrio en el cual la tendencia del K+ para desplazarse al exterior de la célula se equilibra por su tendencia a desplazarse al interior de la misma y en dicho equilibrio hay un ligero exceso de cationes fuera de la célula y de aniones en el interior. Esta situación se mantiene por la acción de la Na, K-ATPasa, que utiliza la energía obtenida del ATP para bombear K+ de regreso al interior de la célula y mantiene baja la concentración intracelular de Na+. La Na, K-ATPasa desplaza tres moléculas de Na+ fuera de la célula por cada dos de K+ que entran y por tanto también contribuye al potencial de membrana, lo que se conoce como bomba electrógena. Cabe resaltar que el número de iones que participan en el potencial de membrana es una fracción mínima del número total presente y que las concentraciones totales de iones positivos y negativos son iguales en cualquier sitio, excepto a lo largo de la membrana.