++
Para minimizar el daño del material genético el organismo dispone de diversos sistemas de reparación que se activan dependiendo del tipo de daño provocado en el genoma. Estos mecanismos de reparación se pueden clasificar en cuatro categorías: reparación directa, reparación por escisión, reparación de emparejamientos erróneos (apareamientos incorrectos) y reparación de roturas de doble cadena.
++
La reparación directa involucra sistemas que eliminan directamente el daño en el ADN inmediatamente después de producidos. Este tipo de reparación no es muy común, ya que hay algunos daños en el ADN irreversibles. La fotorreactivación es el mecanismo de organismos procariotes mediante la enzima fotoliasa para reconocer los dímeros de pirimidinas producidos por la luz UV. Esta enzima se une al dímero de timina y utiliza la energía de la luz para romper los enlaces covalentes entre las pirimidinas, con lo que logra que vuelvan a formar complementariedad con la cadena antiparalela (figura 9-3). Otro tipo de enzimas que participan en este sistema de reparación son las alquiltransferasas, enzimas que eliminan los grupos alquilos de la guanina y restauran la estructura original, sin la necesidad de alterar el esqueleto del ADN.
++
+++
Sistemas de reparación por escisión: reparación por escisión de bases y reparación por escisión de nucleótidos
+++
Reparación por escisión de bases
++
El sistema de reparación por escisión de bases (base excision repair, BER) elimina del genoma las bases dañadas que se producen por alquilación, radiación ionizante, oxidación y desaminación. En este sistema intervienen las enzimas denominadas ADN glucosilasas, de las cuales existen por lo menos ocho tipos distintos específicos para cada lesión. La reparación se realiza hidrolizando el enlace glucosídico entre la base nitrogenada y el azúcar, con lo que se elimina la base dañada. Esta rotura genera sitios apurínicos o apirimidínicos reconocidos por una AP endonucleasa 1 (APE-1) que rompe el enlace fosfodiéster adyacente. Posteriormente, la ADN polimerasa β adiciona los nucleótidos para rellenar el hueco generado empleando la cadena que no está dañada como molde. El fragmento recién sintetizado forma el enlace fosfodiéster faltante para su ligación gracias a la ligasa (figura 9-4).
++
+++
Reparación por escisión de nucleótidos
++
El sistema de reparación por escisión de nucleótidos (nucleotide excision repair, NER) reconoce cualquier lesión que provoque una distorsión importante en la doble cadena del ADN. Implica en primer lugar el reconocimiento del daño en la secuencia del ADN; posteriormente, una endonucleasa hidroliza los enlaces fosfodiéster a cada lado y varios pares de bases de distancia de la lesión, y se elimina el fragmento de ADN de cadena sencilla que presenta la lesión. El hueco que se genera por la rotura se rellena con ayuda de la ADN polimerasa I y, por último, la ligasa sella la cadena que se sintetiza. Defectos en las proteínas de este sistema provocan el síndrome xeroderma pigmentosa (XP).
++
En Escherichia coli esta reparación la llevan a cabo cuatro proteínas: UvrA, UvrB, UvrC y UvrD (UV resistant). UvrA y UvrB se unen para formar un complejo que se encarga de reconocer las distorsiones en la cadena de ADN. Una vez que localizan el daño, UvrA se disocia del complejo; UvrB separa la doble cadena de ADN; a continuación, UvrC se une a UvrB, y el complejo corta a siete nucleótidos de distancia en dirección 5´ y cuatro en dirección 3’ del sitio de la lesión. Posteriormente, UvrD, una helicasa, ayuda a liberar el fragmento y, por acción de la ADN polimerasa I y la ligasa, se rellena el hueco generado con el corte (figura 9-5).
++
+++
Sistema 8-oxo guanina
++
La radiación UV, la radiación ionizante y algunos agentes químicos pueden provocar que las bases del ADN se oxiden. Una base muy susceptible de oxidación por especies reactivas de oxígeno (ROS) es la guanina, que como consecuencia se transforma en 8-oxo guanina (GO) u 8-hidroxiguanina, que en lugar de unirse a la citosina se unirá a una adenina y producirá un par erróneo G-A. Este error ocasionará, después de la replicación, una sustitución de C por A en el genoma, error que si no se repara se transmitirá a la siguiente generación como un cambio permanente.
++
En humanos, una enzima llamada ADN OGG1 reconoce a la adenina unida con la GO, elimina la base incorrecta (adenina) y la sustituye por la citosina correcta (figura 9-6). Las enzimas participantes en este sistema en procariotes son mutM y mutY (metil-directed mismatch repair).
++
+++
Sistema de reparación de los apareamientos erróneos
++
Este sistema se basa en la reparación de las bases mal apareadas y la corrección de los bucles que se producen en la cadena de ADN como consecuencia del deslizamiento de la polimerasa durante la replicación. El ejemplo más clásico de este sistema de reparación es el que utiliza E. coli, en el que participan tres proteínas: MutS, MutL y MutH. La proteína MutS reconoce las bases mal apareadas y se une a ellas; MutL permitirá que se forme el complejo de reparación y, a su vez, activará MutH, con actividad de endonucleasa; además producirá la rotura de la cadena donde se localiza la base mal apareada, y MutH tiene la capacidad de discriminar la cadena que se tiene que reparar por el fenómeno de hemimetilación. La enzima Dam metilasa (ADN adenine methylation) se encarga de la metilación de la secuencia 5´-GATC-3´ en las dos cadenas, por lo que después de que ocurra la replicación del ADN, la única cadena metilada será la parental, mientras que la cadena de nueva síntesis no estará metilada y se reconocerá como la cadena que se ha de reparar. Una vez que se elimina el segmento con la base mal apareada, la polimerasa III añade la base correcta (figura 9-7). Este sistema de reparación también puede encontrarse en células eucariotas, donde participan dos proteínas: la MSH y MLH, análogos de MutS y MutL, respectivamente. Un defecto en este sistema provoca inestabilidad cromosómica asociada a enfermedades como el cáncer de colon.
++
++
Este sistema responde a la acumulación de ADN de cadena sencilla cuando el proceso de replicación se bloquea. Está integrado por más de 40 genes, que son activados por la proteína RecA (recombination protein A) en procariotes. En ausencia de daño, los genes SOS (save our soul) se encuentran unidos a su represor LexA. El ADN de cadena sencilla es una señal de activación para la proteína RecA que se une al ADN de cadena sencilla (ADNss) e interactúa con el represor LexA, lo que facilita su autoproteólisis; esto induce la transcripción de los genes que contienen la caja SOS (figura 9-8). Con ello, aumentan los niveles de las proteínas lexA, recA, UvrA, UvrB y UvrD. Por tanto, el primer mecanismo de reparación que se activa en respuesta a SOS es la reparación por escisión de nucleótidos (NER), que tratará de corregir el daño sin un encendido total de la vía SOS. Si el sistema NER no es suficiente para la reparación del ADN, las concentraciones de LexA disminuyen y se expresan genes como sulA, umuD y umuC (UV-induced mutagenesis). La proteína SulA se une a FtsZ (molécula indispensable para el inicio del ciclo celular) y detiene la división celular. Con ello, se induce al sistema de reparación Umu-DC dependiente de mutagénicos.
++
+++
Reparación de roturas de doble cadena
+++
Reparación por recombinación homóloga
++
Es un sistema de reparación preciso que actúa durante la fase S del ciclo celular. Durante el proceso de replicación, este sistema se induce por la necesidad de tener una copia de ADN correcta que sirva como molde para restaurar la información perdida en la cadena dañada. En este sistema de reparación están involucrados los genes que pertenecen al grupo de epistasia de RAD52 (radiation sensitive mutant 52), como RAD50, RAD51, RAD52, RAD55, RAD57, RAD59 y el complejo MRN formado por MRE11 (meitoic recombination 11), RAD50 y NBS1 (Nijmegen breakage syndrome 1). Además, intervienen otros genes, como BRCA1 y BRCA2 (cáncer de mama 1 y 2). En humanos, RAD51 desempeña un papel primordial en los mecanismos de recombinación homóloga para la reparación de roturas en la doble cadena del ADN. La recombinación homóloga implica gasto e hidrolisis de adenosín trifosfato (ATP) para el intercambio de la cadena de ADN, por secuencias homólogas. El primer paso para la reparación por recombinación homóloga involucra la activación del gen de la ataxia-telangiectasia mutado (ataxia telangiectasia mutated, ATM) que recluta el complejo MRN para que se una al ADN y, por su actividad de exonucleasa 5’-3’, procesa los extremos donde ocurrió el daño dejando expuestos los extremos 3´ en forma de cadena sencilla. A continuación, la proteína de replicación A (RPA) se une al ADN de cadena sencilla e interactúa con RAD52; éste es desplazado por BRCA2, que atrae a RAD51. Por último, RAD51 se une a la cadena sencilla y forma una nucleoproteína filamentosa con el ADN. Con ayuda de RAD54 invade la hélice homóloga que sirve como molde para restaurar el fragmento dañado (figura 9-9). Alteraciones en las proteínas que participan en este sistema provocan el síndrome de Bloom, la ataxia-telangiectasia y la anemia de Fanconi, que se describirán más adelante.
++
+++
Unión de extremos no homólogos
++
Este sistema es uno de los que pueden participar cuando se producen roturas en la doble cadena de ADN. El componente principal de este sistema es la proteína de cinasa dependiente de ADN (ADN-PKcs), que consta de tres subunidades: KU70, KU80 y la subunidad catalítica ADN-PKcs. Estas subunidades reconocen los cortes en el ADN y mantienen los extremos en proximidad para su procesamiento y reunión. Para que se lleve a cabo el alineamiento de los extremos es necesario el complejo ARTEMIS/ADN-PKcs, con actividad de nucleasa y el complejo XRCC4/ligasaIV, que se encarga del paso final de la ligación (figura 9-10). Este proceso puede tener varios errores, ya que únicamente une los extremos rotos, lo que conlleva la pérdida de nucleótidos en el punto de unión. Este proceso se lleva a cabo principalmente en mamíferos; sin embargo, también se ha encontrado en algunas procariotas, lo que sugiere que está muy conservado evolutivamente.
++