++
Existen diversos métodos de cuantificación de ácidos nucleicos; los más usados son la espectrofotometría y la fluorometría.
++
El fundamento de la espectrofotometría es que cualquier solución que contenga moléculas suspendidas permite el paso de un haz de luz a través de ella en proporción inversa a la cantidad de moléculas que contiene. Los nucleótidos de ADN y ARN presentan la absorción máxima a una longitud de onda de 260 nm (luz ultravioleta, UV); por lo tanto, los espectrofotómetros son los aparatos más utilizados para determinar la concentración de ácidos nucleicos en solución. En la celda del espectrofotómetro un haz de luz atraviesa la solución de ácidos nucleicos y, cuando ha pasado por la muestra, un fotodetector mide la intensidad de luz absorbida. Mientras más luz absorba la muestra (absorbancia) mayor será la concentración de ácidos nucleicos. En la figura 11-4 se esquematiza el fundamento de la medición de concentración de moléculas en un espectrofotómetro.
++
++
++
La densidad óptica (OD) es la unidad de absorbancia y tiene valores particulares para cada molécula específica en una determinada longitud de onda por unidad de distancia. En el caso de los ácidos nucleicos, una OD de 1 a 260 nm equivale a 50 µg/ml de ADNds, 37 µg/ml de ADNss, 40 µg/ml de ARN o 33 µg/ml de oligonucleótidos. Según estos valores, se estableció la siguiente fórmula para el cálculo de la concentración de los ácidos nucleicos:
++
µg/µl de AN = OD a 260 nm × Dilución × constante / 1 000
++
++
OD a 260 nm: absorbancia del ácido nucleico a 260 nm de longitud de onda.
++
Dilución: como se requieren volúmenes relativamente grandes de solución para cubrir la capacidad de las celdas de los espectrofotómetros, suelen manejarse diluciones 1:100 a 1:1000 del stock de ADN, en una solución en fosfato de sodio dibásico, 1.5 μM a pH 5.2 (Na2HPO4), que permite leer los nucleótidos sin interferencia. Algunos equipos permiten la lectura directa del ácido nucleico, como el espectrofotómetro NanoDrop™, usando volúmenes micrométricos (1 a 2 µM), donde la muestra no se diluye sino que se aplica directamente en el aparato.
++
Constante: proveniente del valor teórico de OD para cada ácido nucleico: a) 50 para el ADNds; b) 40 para ARN; c) 33 para oligonucleótidos, y d) 37 para ADNss.
+++
Valoración de la pureza del ácido nucleico extraído
++
A pesar de que la técnica de extracción de ácidos nucleicos esté bien realizada, es prácticamente imposible eliminar la totalidad de las proteínas celulares que acompañan al ADN, así como solventes u otros componentes orgánicos empleados en la extracción, los cuales se presentan como contaminantes de la solución de ácido nucleico, lo que puede repercutir en las técnicas en que se pretenda emplear el ácido nucleico. Debido a que el espectro de absorción de luz de estas moléculas es característico, la absorción en otras longitudes de onda de la muestra de ácidos nucleicos se compara con la absorción a 260 nm, con el fin de valorar la pureza del ácido nucleico extraído. Así, para el cálculo de estos índices se procede a dividir la OD obtenida para la muestra de ácidos nucleicos a 260 nm entre la OD de interés.
+++
Contaminación con proteínas: índice 260 ÷ 280
++
Dado que las proteínas (en particular los aminoácidos aromáticos) absorben luz a una longitud de onda de 280 nm, por lo común el índice de absorción 260÷280 nm se utiliza para valorar la pureza de los ácidos nucleicos con respecto a la contaminación con proteínas. Cuando éste se encuentra entre 1.8 y 2.0, se considera óptimo, ya que valores cercanos a 1.8 indican que la muestra contiene casi exclusivamente ADN; para el ARN el índice óptimo es de 2.0. La presencia de proteínas hará disminuir este cociente, por lo que si la relación 260÷280 es menor que 1.8 la cantidad de proteína en la muestra es alta y es conveniente realizar un nuevo proceso de extracción. Un índice mayor que valores de 2.0 indica una rotura de las cadenas de los ácidos nucleicos, y se considera que es un ácido nucleico de calidad insuficiente, por lo que en este caso también se recomienda una nueva extracción. Sin embargo, este índice no es infalible y puede modificarse si el pH del medio se modifica; la acidez puede hacer disminuir hasta 0.2 a 0.3 unidades el índice, mientras que la basicidad puede aumentarlo. Por otro lado, la composición de nucleótidos libres afecta también esta relación, ya que si se calculase el índice 260÷280 para cada nucleótido se obtendría: guanina: 1.15, adenina: 4.50, citosina: 1.51, uracilo: 4.00 y timina: 1.47; por ello, el ARN tendrá típicamente valores mayores que el índice 260÷280, por su contenido de uracilos, que difieren notablemente del índice que producen las timinas.
+++
Contaminación con fenol: índice 260 ÷ 270
++
El fenol tiene un pico de absorbancia de 270 nm, por lo que a 260 nm todavía absorbe gran cantidad de luz. Debido a este efecto solapante, la contaminación con fenol (utilizado en la extracción) sobreestima de forma significativa la concentración de ácidos nucleicos. Las preparaciones de ácidos nucleicos sin contaminación fenólica presentan un índice 260÷270 de alrededor de 1.2.
+++
Contaminación con fenol y sales: índice 260 ÷ 230
++
La absorción de luz UV a una longitud de onda de 230 nm significa que la muestra está contaminada con iones fenolatos o tiocianatos, péptidos, compuestos aromáticos u otras sustancias. Para muestras puras de ácidos nucleicos el índice 260÷230 se espera en el rango 2.0-2.2; muestras con un índice menor indican la presencia de contaminantes que absorben a 230 nm, como EDTA, carbohidratos y fenol. El TriZol™, empleado para la extracción de ARN, es una solución fenólica que absorbe luz UV tanto a 230 nm como a 270 nm.
++
La cuantificación de ADN o ARN por fluorometría es 1000 veces más sensible que la espectrofotométrica, y menos susceptible a las interferencias por proteínas y contaminantes presentes en la solución. Esta metodología se basa en la unión específica de colorantes fluorescentes al ácido nucleico, que absorbe luz de una determinada longitud de onda y emite luz de una longitud de onda superior (de menor energía). La relación entre la concentración del ácido nucleico y la intensidad de emisión fluorescente es directamente proporcional. Esta técnica requiere de estándares de concentración conocida, contra el cual interpolar los valores de la muestra.
++
Los colorantes más empleados son el Hoechst 33258, una bis-benzimida que se intercala en la doble cadena de ADN en regiones ricas en AT, que se excita en el espectro UV (350 nm) y emite en el visible a 450 nm. Su sensibilidad es de aproximadamente 10 ng/ml. Para la cuantificación de ARN, se realiza un pretratamiento con ADNsas, y suele emplearse RiboGreen, un colorante que absorbe a ~500 nm y emite a ~525 nm. Su sensibilidad es de 1 pg/µl. La desventaja principal de esta técnica es que no proporciona información de la pureza (como el índice A260:A280), ni de la posible degradación del ARN o ADN, por lo que se requiere realizar una electroforesis para comprobar la integridad del ácido nucleico. En los fluorómetros, la señal electrónica para la misma concentración de una sustancia varía de un instrumento a otro, por lo que mediciones hechas en equipos diferentes no pueden compararse. Se recomienda medir la fluorescencia en soluciones diluidas, pues se corre riesgo de no iluminar por igual todas las partes de la solución y cuantificar de forma inadecuada las distintas capas de la solución.
++
El ácido nucleico se mantiene en congelación (–80°C es la temperatura recomendada) hasta su empleo. Es bien sabido que a menor temperatura la preservación se prolonga, así como que múltiples descongelaciones ocasionan una degradación progresiva en los ácidos nucleicos, por lo que se recomienda hacer alícuotas. También se dispone de métodos comerciales para la preservación del ADN, como son los tubos GenTegra™ ADN, que contienen una matriz química inerte que permite el almacenamiento del ADN seco y a temperatura ambiente por días o meses sin hidrólisis u oxidación.