++
La nutrición molecular es una ciencia constituida por dos ramas: la nutrigenómica y la nutrigenética; ambas van de la mano, una no puede excluir a la otra.
++
La nutrigenómica estudia los efectos de los componentes de la dieta sobre la modulación de la expresión génica de un individuo, y la nutrigenética es el estudio de la expresión de los genes en respuesta a nutrientes específicos, pero condicionada por las variantes génicas individuales. En otras palabras, la nutrición molecular se desarrolla en dos direcciones: una que estudia la influencia de los nutrimentos sobre la expresión de los genes, y otra que estudia la influencia de las variaciones génicas en la respuesta del organismo a los nutrimentos, como se esquematiza en la figura 29-1.
++
+++
Fundamentos de la nutrición molecular, objetivos y avance científico
++
El desarrollo de la nutrición molecular se fundamenta en los siguientes conocimientos:
La expresión de los genes es lo que define el estado de salud-enfermedad de un individuo.
La constitución génica confiere a cada individuo un perfil de expresión de susceptibilidad o protección ante agentes exógenos y procesos endógenos del organismo.
La estructura primaria de los genes y el ambiente son los factores que determinan la expresión génica.
La nutrición constituye la variable ambiental modificable más importante que tiene la capacidad de modular la expresión de los genes.
Los genes predisponen, pero el ambiente determina.
++
La nutrición molecular guarda una estrecha analogía con la farmacología molecular en lo que se refiere al enfoque científico y las herramientas de estudio que se emplean, ya que ambas disciplinas estudian la respuesta del organismo a moléculas de origen exógeno. La farmacología molecular estudia el mecanismo de acción de moléculas aisladas, a bajas concentraciones, que generalmente actúan con una afinidad y una selectividad elevadas para una cantidad limitada de blancos biológicos. Sin embargo, la nutrición molecular representa un grado mucho mayor de complejidad, dado que el organismo debe manejar una gran cantidad de componentes a la vez, cuya concentración puede ser elevada, sin alcanzar niveles tóxicos. Además, cada nutrimento puede tener varios blancos biológicos, con una afinidad y una especificidad diferentes.
++
Los alimentos que se ingieren contienen numerosas sustancias biológicamente activas, de las cuales algunas son potencialmente benéficas para la salud, mientras que otras pueden ejercer un efecto perjudicial en condiciones especiales. Se dispone de reportes científicos que señalan la asociación de algunos alimentos o cantidades de ellos con el desarrollo o agravamiento de afecciones específicas, así como otros que describen el mecanismo molecular de la acción benéfica de algunos nutrimentos. Dilucidar con exactitud el componente de la dieta responsable de una respuesta particular resulta una tarea difícil, para lo cual se utilizan la tecnología de microarreglos, los animales transgénicos, los cultivos celulares y el estudio de polimorfismos, mutaciones y cambios epigenéticos.
++
Los principales objetivos de la nutrición molecular son la búsqueda de alternativas nutricionales para frenar la prevalencia creciente de las enfermedades crónicas degenerativas, que dependen de forma parcial de la exposición a diversos componentes de los alimentos durante periodos prolongados y a sus efectos moduladores, así como el análisis del efecto provocado por algunos alimentos en función de variantes génicas individuales.
++
En la actualidad se conoce que algunos nutrimentos se unen de forma directa o afectan de manera indirecta a los factores de transcripción, los cuales regulan la expresión de genes específicos. Las vías descritas con más frecuencia son las involucradas en el metabolismo de lípidos, el estrés oxidativo y los errores innatos del metabolismo.
++
A continuación, se ejemplifican algunas interacciones nutrimento-gen y gen-nutrimento para comprender mejor los efectos moduladores de la dieta.
+++
Interacciones nutrimento-gen
++
Las interacciones nutrimento-gen son el objeto de estudio de la nutrigenómica. En los últimos años, se ha descrito el efecto molecular de numerosos componentes de los alimentos, tratando de explicar el beneficio o perjuicio resultante de su consumo. En la figura 29-2 se observa la estructura química de algunos nutrimentos presentes en diversos alimentos, cuya función molecular se explica a continuación.
++
+++
Galato de epigalocatecina
++
El té verde forma parte de la dieta oriental cotidiana, y Japón se ha catalogado como uno de los países con un mayor índice de longevidad, para lo cual la nutrición ha contribuido de manera significativa. El galato de epigalocatecina (EGCG) es el principal componente del té verde, responsable de los efectos benéficos que se le atribuyen. Este compuesto pertenece al grupo de los flavonoides, que son pigmentos vegetales, metabolitos secundarios de las plantas. Se sintetizan a partir de una molécula de fenilalanina y tres moléculas de malonilCoA. Los flavonoides están presentes en frutas, verduras y bebidas derivadas de éstas, y el consumo de alimentos y bebidas ricas en flavonoides, como el té verde, se ha asociado a una baja incidencia de cáncer. Se han propuesto varios mecanismos de acción molecular in vivo e in vitro que explican el efecto de EGCG sobre la inhibición del crecimiento, invasión, metástasis y angiogénesis de células tumorales. El EGCG bloquea el crecimiento de células tumorales mediante la inhibición de la actividad de la telomerasa, y regula de forma negativa la región promotora del gen, con la subsecuente fragmentación de los telómeros. Asimismo, el EGCG incrementa la expresión de proteínas como p53 y p21, que detienen la replicación de células con genoma alterado para promover su reparación. En el caso de que el daño sea irreparable, p53 y p21 inducen la expresión de las enzimas caspasas, cuya función es llevar a cabo el proceso de apoptosis, o muerte celular programada. El EGCG impide la metástasis tumoral mediante la interferencia de la síntesis de urocinasa y metaloproteinasas. El EGCG también ejerce un efecto inhibitorio de la angiogénesis a través de la disminución de la expresión del factor de crecimiento endotelial vascular C (vascular endotelial growth factor C, VEGFC) y del bloqueo de la fosforilación de su receptor tipo 2 (VEGFR2), para impedir su activación. Por otro lado, el EGCG ejerce un efecto antioxidante y antiinflamatorio a través de la disminución de moléculas oxidantes, como los radicales libres, el óxido nítrico y la IL-6. Estas moléculas presentan la capacidad de activar las cinasas (IκK) que fosforilan el inhibidor (IkB) del factor nuclear kappa B (NF—κB), un factor transcripcional que posee una región de localización nuclear que le permite ser transportado al núcleo cuando es liberado del IkB fosforilado. Una vez en el núcleo, el NF—κB interactúa con el promotor de genes proinflamatorios, como el factor de necrosis tumoral alfa (TNFα) y la IL-6, para promover su expresión. Es decir, la presencia de EGCG disminuye la actividad de la IκK, bloqueando la translocación nuclear de NF-κB, y da como resultado un efecto antiinflamatorio (figura 29-3).
++
+++
RECOMENDACIONES NUTRICIONALES
++
En la literatura se menciona que el consumo de 100 a 300 mg de flavonoides al día puede prevenir el desarrollo de procesos patológicos. Una taza de té verde (240 ml) contiene aproximadamente 334 mg de EGCG, aunque existen otras fuentes nutricionales de flavonoides (100 g de pimiento amarillo, uvas, naranjas contienen 58, 55 o 44 mg de flavonoides, respectivamente).
+++
Ácido docosahexaenoico
++
El pescado es un elemento de la dieta ampliamente recomendado por su alto valor nutricional. En la actualidad, el empleo de modelos experimentales in vivo ha hecho posible dilucidar el efecto de algunos de sus componentes sobre la expresión de genes. El ácido docosahexaenoico (DHA) es un ácido graso poliinsaturado esencial, cuya nomenclatura química es 22:6(n-3), por tener una cadena de 22 carbonos, con 6 enlaces dobles cis a partir del carbono 3, por lo que pertenece al grupo de ácidos grasos omega 3 (figura 29-2). Su fuente dietética son los peces que habitan en aguas frías, como la trucha o el salmón, los cuales reservan grasa, y principalmente grasas insaturadas, para mantener su temperatura corporal.
++
Algunos estudios epidemiológicos muestran asociación entre el consumo de pescado y una baja incidencia de cáncer. En estudios in vitro e in vivo se ha demostrado el efecto modulador del DHA en la expresión de genes que participan en la replicación y la muerte celular. Algunos experimentos realizados en células de cáncer de mama revelan que el DHA altera la estabilidad de la membrana plasmática y aumenta el nivel de insaturación de los ácidos grasos contenidos en ella; además, modifica la señalización celular, lo cual promueve la expresión de Bcl2 y procaspasa 8, mediadoras de apoptosis.
++
Asimismo, el DHA activa la vía de las caspasas 3 y 9, y propicia la apoptosis de las células que presentan mutaciones irreparables. El DHA disminuye la expresión de β-catenina, proteína con actividad de cinasa, capaz de fosforilar y activar factores transcripcionales e inducir la expresión de diversos protooncogenes, principalmente c-myc. El aumento de la expresión de β-catenina se asocia a genes inductores del ciclo celular en el desarrollo de la poliposis adenomatosa familiar, por lo que se han realizado estudios con DHA en pacientes con este padecimiento, en los que se han reportado resultados alentadores. Por otro lado, el DHA, por ser un ácido graso poliinsaturado, desempeña un papel antioxidante protector en la reposición de lípidos de membrana que han sido dañados por efecto de los radicales libres.
+++
RECOMENDACIONES NUTRICIONALES
++
En la literatura se menciona que el consumo de 400 mg/kg de peso de DHA al día es preventivo para el desarrollo de cáncer de mama y de próstata en modelos in vivo. En humanos, esta cantidad sólo puede obtenerse por suplementación.
++
Diversos estudios epidemiológicos asocian el consumo de vegetales con una baja incidencia de cáncer, por lo que se ha recomendado como parte de una dieta saludable. Algunos compuestos, como el sulforafano (SFN), han mostrado un efecto modulador en la expresión de genes, y su utilidad en la anticarcinogénesis se ha comprobado en modelos experimentales in vitro e in vivo. El SFN pertenece al grupo de los isotiocianatos, como se muestra en la figura 29-2, los cuales se sintetizan y almacenan en plantas como precursores estables inactivos, conocidos como glucosinolatos. Los glucosinolatos, al ser hidrolizados por la enzima mirosinasa a isotiocianatos, se convierten en moléculas activas. Las verduras crucíferas, como la coliflor, las colecitas de brucelas, la col, el brócoli y, sobre todo, el brócoli germinado, son sus fuentes dietéticas más abundantes.
++
El SFN se ha catalogado como un inhibidor (HDACi) de las enzimas desacetiladoras de histonas (HDAC). Cabe recordar que las histonas son proteínas que se encuentran unidas al ADN empaquetado y que su estado de acetilación/desacetilación desempeña un papel preponderante en la expresión de genes. De una manera simplista, puede decirse que cuando las histonas están acetiladas se disocian del ADN y los factores transcripcionales interactúan con sus elementos de respuesta en el ADN e inducen la transcripción de genes. Cuando las histonas se desacetilan, el ADN vuelve a empaquetarse en éstas y cesa la transcripción. El mecanismo molecular del SFN como HDACi no se conoce con precisión; sin embargo, se infiere que se une al sitio catalítico de las HDAC e impide que ésta lleve a cabo su función de desacetilación, lo que permite, en consecuencia, la expresión de genes. En diferentes estudios se ha observado que el SFN específicamente aumenta la acetilación de las histonas H3 y H4 en el promotor de p21, y elimina la represión de los genes p21 y Bax, que codifican proteínas de arresto de ciclo celular y apoptosis, respectivamente, por lo que evita la proliferación de células cancerígenas (figura 29-4).
++
++
El consumo de SFN se ha relacionado con la disminución del tamaño de tumores a través de la inducción de muerte celular apoptótica causada por la inducción de caspasa 3, acompañada de una sobrerregulación de Bax y la subregulación de las proteínas Bcl-2 y Bcl-xL. También se ha sugerido que la muerte celular inducida por SFN podría estar mediada por estrés oxidativo, ya que se demostró inhibición por la N-acetil-cisteína y la catalasa, que son fuertes antioxidantes.
+++
RECOMENDACIONES NUTRICIONALES
++
El consumo de 68 g de germinado de brócoli (una taza de 240 ml), que contienen aproximadamente 105 mg de SFN, podría tener un efecto preventivo en cáncer en humanos. Se necesitaría consumir más de medio kilogramo de brócoli maduro para obtener la misma cantidad de SFN.
++
Existen otros nutrimentos en la dieta, cuyos requerimientos normales son aparentemente bajos, como los carotenoides, la vitamina C, el ácido fólico, el cinc y la vitamina E, entre otros. Sin embargo, no por eso dejan de participar de manera importante en la modulación de la expresión génica.
++
Los carotenoides son pigmentos vegetales que, al ser metabolizados, generan retinoides. Tienen la capacidad de disminuir el daño oxidativo ocasionado en el ADN por los radicales libres superóxido y peróxido de hidrógeno, al aumentar la expresión de las enzimas catalasa, superóxido dismutasa y glutatión reductasa. Los radicales libres son capaces de inducir una respuesta inflamatoria a través de la activación de la cascada de señalización de NFkB, por lo que a los carotenoides también se les atribuye una acción antiinflamatoria.
++
Por otro lado, se ha demostrado el efecto hipoglucemiante de estos compuestos. Su fuente dietética está constituida por alimentos coloreados (amarillos, naranjas, verdes, rojos), tales como jitomate, zanahoria o espinacas. Se recomienda un consumo diario de carotenoides de 24 mg/día, que pueden obtenerse por combinación de alimentos. Esta cantidad de carotenoides se encuentra en seis tazas de zanahoria, cuatro piezas de jitomate o una taza y media de espinacas, por mencionar algunas fuentes.
++
La deficiencia de vitamina C causa aumento en la oxidación del ADN de células somáticas y germinales en el humano, un proceso que ocurre con más frecuencia en los residuos de guanina por presentar un potencial de oxidación mayor que las otras bases nitrogenadas. Este proceso oxidativo se asocia con enfermedades como el cáncer.
++
Asimismo, la deficiencia de vitamina C se ha asociado a la alteración de las glucosidasas reparadoras del ADN que eliminan las bases dañadas. La dosis recomendada es de 60 mg/día. Algunos alimentos con altos contenidos de vitamina C son el brócoli, el chile poblano, el kiwi, la naranja y la guayaba.
++
El ácido fólico es una vitamina hidrosoluble, cuya deficiencia causa defectos de cierre del tubo neural en la etapa fetal, relacionados de forma directa con el aumento del daño al genoma. Su carencia aumenta el riesgo de presentar leucemia en hijos de madres con suplementación inadecuada durante el embarazo. Además, su deficiencia provoca la incorporación de uracilo en lugar de timina en la síntesis del ADN, lo que altera la metilación de las islas CpG en el ADN y ocasiona una reparación inadecuada del mismo.
++
La cantidad de consumo recomendada es 400 μg/día. Algunos alimentos con altos contenidos de ácido fólico son las espinacas, el hígado de pollo, el frijol bayo, los garbanzos, las habas y las lentejas.
++
El cinc es un metal que participa como cofactor enzimático en diversas reacciones bioquímicas y que desempeña un papel importante en el funcionamiento del sistema inmunológico y en el metabolismo de los hidratos de carbono. Los alimentos ricos en proteínas contienen grandes cantidades de cinc. Las carnes de res, cerdo y cordero contienen mayor cantidad de cinc que el pescado y su contenido también es mayor en la carne oscura del pollo que en la blanca. Las frutas y las verduras no son una buena fuente de cinc; por tanto, las dietas vegetarianas y las pobres en proteínas animales tienden a ser bajas en este oligoelemento. Se recomienda un consumo de cinc de 12 a 15 mg/día. Los siguientes alimentos aportan dosis altas de cinc: carne de res, carpa, ostiones, leche descremada en polvo, frijol negro, lentejas y ajonjolí.
++
Es una vitamina liposoluble y su deficiencia se ha asociado con la alteración de las glucosilasas reparadoras del ADN que eliminan las bases dañadas en el genoma. La vitamina E constituye un potente antioxidante que inhibe la cascada de señalización de NFκB a través de la inactivación de la cinasa IKK, lo que resulta en la retención de NFkB en el citoplasma y bloquea su acción como factor transcripcional. El consumo diario requerido es de 10 mg/día y su fuente dietética principal son las oleaginosas, como las nueces y las almendras.
+++
Interacciones gen-nutrimento
++
Las condiciones génicas particulares que presentan algunos individuos atribuidas a variaciones génicas, ya sean polimorfismos o mutaciones, influyen en el efecto de los nutrimentos sobre el organismo. Las respuestas a los nutrimentos condicionadas por estas variables constituyen el objeto de estudio de la nutrigenética.
++
Tanto los polimorfismos como las mutaciones producen cambios estables en la estructura primaria del genoma humano y son responsables de las variaciones fenotípicas que hacen que cada individuo tenga una identidad propia entre el resto de seres humanos detectable por estudios de ADN. Únicamente 0.01% del genoma humano es susceptible de presentar estas variaciones, ya que 99.9% se conserva igual en todos los individuos. Los polimorfismos se presentan en más de 1% de la población; es decir, son cambios que suceden, relativamente, con una alta frecuencia, pueden pasar totalmente inadvertidos, y afectar la tasa de transcripción de un gen, la actividad o la estructura de una proteína. Los cambios nucleotídicos que suceden en un solo nucleótido (single nucleotide polymorphisms, SNP) son los más frecuentes, aunque también pueden presentarse polimorfismos que afectan a un mayor número de nucleótidos. Se han identificado más de 10 millones de SNP, de los cuales los más comunes aparecen en 5 a 50% de la población. La mayoría de los individuos son heterocigotos (presencia de un alelo silvestre y uno polimórfico) para más de 50 000 SNP, y se ha reportado la asociación de algunos polimorfismos con susceptibilidad o protección a diversos estados patológicos. Por otro lado, las mutaciones son eventos raros que suceden en menos de 1% de la población y, en algunos casos, son responsables directos del desarrollo de enfermedades monogénicas. A continuación, se analizan algunos estados patológicos o no patológicos originados por variaciones en el genoma, que condicionan de manera particular el efecto de algunas sustancias presentes en la alimentación común de los seres humanos.
+++
Fenilcetonuria y fenilalanina
++
La fenilcetonuria (FCN) es una enfermedad caracterizada por la acumulación de fenilalanina, debido a la deficiencia de la enzima fenilalanina hidroxilasa (FAH), que transforma la fenilalanina en tirosina.
++
La fenilalanina es un aminoácido esencial, es decir que se obtiene a través de los alimentos debido a que nuestro organismo es incapaz de sintetizarlo, que sirve como precursor de varias catecolaminas y hormonas.
++
La FCN pertenece al grupo de afecciones denominadas errores innatos del metabolismo. El consumo de proteínas en la dieta es esencial en la alimentación de cualquier persona; sin embargo, su consumo general puede tener efectos perjudiciales irreversibles en los pacientes que padecen de FCN, en quienes la dieta constituye el elemento principal de su tratamiento. La dificultad para metabolizar fenilalanina origina la acumulación de este aminoácido y la consecuente deficiencia de tirosina. La acumulación de fenilalanina conduce al retraso mental, cuyo grado depende de la mutación sufrida en el gen de la FAH, para el cual se han descrito más de 500 mutaciones que originan cambios de aminoácidos, proteínas truncadas por generación de codones de paro o procesamiento incorrecto del ARNm. Estas mutaciones afectan la actividad de la enzima, lo que hace que la FAH sea parcial o totalmente inactiva. La alteración enzimática se diagnostica desde el nacimiento (figura 29-5).
++
+++
RECOMENDACIONES NUTRICIONALES
++
Los individuos con FCN deben recibir una dieta constituida por un hidrolizado proteico libre de fenilalanina desde el nacimiento y hasta, por lo menos, los primeros seis años de vida, o con la cantidad de fenilalanina tolerada por el paciente para mantener los niveles plasmáticos y tisulares necesarios. Por otro lado, para corregir su deficiencia debe suplementarse la tirosina. De esta manera, se han elaborado dietas específicas para pacientes con FCN que deben seguirse al pie de la letra para lograr el desarrollo normal del paciente. La leche materna contiene en promedio 0.47 mg de fenilalanina/ml. Los alimentos de libre consumo para pacientes con FCN, por no contener fenilalanina son azúcar, miel, aceites y refrescos. Las frutas y las verduras frescas contienen, en promedio, 100 mg de fenilalanina/100 g de alimento. La leche, la mantequilla, el arroz, el maíz, las espinacas, la coliflor y el brócoli contienen entre 100 y 500 mg de fenilalanina/100 g de alimento. La cebada, el queso, la avena, el trigo, las almendras, el huevo, la carne y el pescado contienen un alto contenido de fenilalanina, 500 a 1 000 mg/100 g de alimento. Los alimentos con mayor contenido de fenilalanina, más de 1 000 mg/100 g de alimento, son el frijol, las lentejas, los garbanzos, la soya y, en general, todas las leguminosas. El uso de algunos edulcorantes sintéticos, tales como el aspartamo, está totalmente restringido para los pacientes con FCN, debido a que se producen fenilalanina, ácido aspártico y metanol como productos de su metabolismo. Así, como ya se mencionó antes, los elementos de la dieta para un paciente con FCN deben elegirse cuidadosamente para evitar consecuencias irreparables.
+++
Consumo de etanol y polimorfismos C-1019T de CYP2E1, Arg47His de ADH2, Glu487Lis de ALDH2
++
El consumo de bebidas alcohólicas es un asunto controversial. Se ha observado el efecto benéfico que ejerce el etanol al incrementar los niveles de colesterol unido a lipoproteínas de alta densidad (cHDL), por lo que algunos autores recomiendan su consumo moderado como parte de una dieta saludable. Sin embargo, el consumo de etanol puede causar daño hepático de manera diferencial en los individuos, debido a diversos polimorfismos asociados a la susceptibilidad a desarrollar una enfermedad hepática alcohólica. Entre ellos, algunos que se presentan en los genes que codifican para las enzimas metabolizadoras del etanol, como el polimorfismo C-1019T del citocromo P450 2E1 (CYP2E1*2), el polimorfismo Arg47His de la alcohol deshidrogenasa 1B (ADH1B*2) y el polimorfismo Glu487Lis de la aldehído deshidrogenasa 2 (ALDH2*2). Las enzimas ADH1B y ALDH2 catalizan la oxidación del etanol a acetaldehído y luego a acetato, respectivamente. La enzima CYP2E1, por su parte, también convierte el etanol en acetaldehído, lo que genera radicales libres y favorece el estrés oxidativo.
++
El polimorfismo C-1019T de CYP2E1 consiste en el cambio de una citosina por una timina en la posición -1019; es decir, en la región promotora del gen. Algunos estudios in vitro demuestran que este polimorfismo eleva la tasa de transcripción y la actividad enzimática de CYP2E1. El polimorfismo Arg47His de ADH1B consiste en el cambio del aminoácido arginina por el aminoácido histidina en la posición 47 de la proteína, y aumenta su actividad enzimática. El polimorfismo Glu48Lis de ALDH2 se origina por el cambio de glutamina por lisina en el sitio 487 de la proteína, lo cual conduce a la síntesis de una enzima inactiva. En consecuencia, estos polimorfismos conducen a un fenotipo con tendencia a la acumulación de acetaldehído, que puede desencadenar daño hepático. Si bien es cierto que estos polimorfismos se han encontrado principalmente en poblaciones asiáticas, en pacientes mexicanos con cirrosis alcohólica se ha observado asociación entre el daño hepático y el polimorfismo de CYP2E1. De este modo, las personas portadoras de este polimorfismo presentan una mayor susceptibilidad a desarrollar daño hepático en un periodo menor que una persona que no posee dicho polimorfismo. Se han identificado varios polimorfismos asociados al desarrollo de daño hepático, como se muestra en el cuadro 29-1.
++
+++
RECOMENDACIONES NUTRICIONALES
++
El consumo de bebidas alcohólicas, en particular vino tinto, forma parte de la dieta de poblaciones mediterráneas, en las que se ha asociado con niveles óptimos de cHDL, debido principalmente a su alto contenido de sustancias antioxidantes. Sin embargo, hay que considerar que la dieta mediterránea no sólo considera el consumo de vino tinto, sino también una cantidad equilibrada de los diversos componentes de la dieta. Además, el estilo de vida mediterráneo también incluye la realización de actividad física.
++
Cabe señalar que el consumo de etanol en mujeres no debe rebasar 20 g/día y en hombres 40 g/día, para no caer en los niveles de riesgo de padecer enfermedad hepática alcohólica. La cantidad de alcohol ingerida puede calcularse mediante la siguiente fórmula:
++
+++
Lípidos y polimorfismo G-308A de TNFα
++
Los lípidos forman parte de la dieta recomendada, ya que son componentes estructurales de las membranas celulares del cuerpo. Sin embargo, pueden tener efectos diversos dependiendo de la estructura génica de los individuos. Se han descrito algunos polimorfismos que modifican esta respuesta; entre ellos, uno de los más estudiados es el polimorfismo G-308A de TNFα. TNFα es una citosina proinflamatoria de 233 aminoácidos, cuyo gen se localiza en el brazo corto del cromosoma 6 (6p21.3) y consta de 1 669 pares de bases distribuidas en cuatro exones y tres intrones. El gen TNFα puede expresarse en tejido adiposo y contribuir a la resistencia a la insulina, además de causar inflamación, estimulación del sistema inmune, disfunción endotelial, estrés oxidativo y calcificación vascular. TNFα presenta un polimorfismo importante en la posición -308, que corresponde a la región promotora, donde se lleva a cabo la sustitución de guanina por adenina. Este polimorfismo incrementa la tasa de transcripción y hace que los individuos que lo presentan sean más susceptibles de desarrollar un perfil inflamatorio; además, se ha propuesto como un polimorfismo de riesgo para enfermedades cardiovasculares y dislipidemias.
+++
RECOMENDACIONES NUTRICIONALES
++
Una dieta balanceada incluye alimentos que contienen fibra soluble e insoluble, de los que existe una gran variedad; entre los de mayor contenido de fibra soluble destacan la avena y los nopales. Se recomienda un consumo de β-glucano de 3 g/día, lo cual equivale aproximadamente a ingerir 25 g de avena o nopales por día. Esta recomendación puede tener resultados muy favorables en la población general, pero principalmente en los individuos con genotipos de susceptibilidad a dislipidemias y riesgo cardiovascular.