++
La información genética de los deportistas es un factor determinante para el éxito de éste en determinada disciplina deportiva. Se ha comprobado la influencia de los factores genéticos en el desempeño de ciertos deportes, por lo que desde el momento de su concepción cada persona está predispuesta a ciertas cualidades individuales o carencias fisiológicas o metabólicas que pueden ser favorables o desfavorables en la realización de determinada actividad física.
++
Estas predisposiciones genéticas en favor de una actividad física son la estatura, la capacidad de oxigenación sanguínea, el tipo de fibra muscular predominante, la red sanguínea coronaria y pulmonar, el tamaño del corazón, el volumen del ventrículo izquierdo, etc. Sin embargo, otras determinantes importantes son la tradición deportiva de la familia, la motivación, el factor nutricional y geográfico al que el atleta ha sido expuesto, las cuales se cree que influyen hasta en 70% en el rendimiento deportivo. El análisis genético puede considerarse decisivo sólo para ciertos genes cuya influencia en el desempeño deportivo es crucial.
++
El acondicionamiento físico se mide por la cantidad máxima de oxígeno que un organismo puede transportar en un minuto y se define por el consumo máximo de oxígeno (VO2 máx), que se mide en litros por minuto, se correlaciona con el peso del individuo e indica la capacidad aeróbica de una persona. El VO2 máx mejora con casi todos los tipos de entrenamientos, pero depende de varios factores fisiológicos, como la capacidad de ventilación pulmonar, la capacidad difusora de los pulmones, el tamaño del corazón, la capacidad de la sangre para transportar el oxígeno, la utilización muscular del oxígeno y el tipo de fibras musculares. El VO2 máx es una capacidad condicionada por la genética; diversos estudios han demostrado que existen personas respondedoras al entrenamiento que logran que su VO2 máx aumente en 60%, mientras que otros individuos, clasificados como no respondedores, sometidos al mismo entrenamiento no mejoran notablemente su capacidad aeróbica.
++
El tipo de fibra muscular es una característica fenotípica que influye de manera determinante en el desempeño deportivo. La contracción muscular está determinada por la interacción de las proteínas miofibrilares miosina y actina. Las proteínas α-actinas son una familia de proteínas de unión a actina importantes para la contracción y el anclaje de los filamentos musculares de la actina. En seres humanos, cuatro genes codifican para estas proteínas: ACTN1, 2, 3 y 4. ACTN2 y 3 son las que se expresan en el citoesqueleto del músculo esquelético. Ambas proteínas se localizan en la línea Z de la fibra muscular, pero ACTN2 se expresa en todas las fibras musculares, mientras que ACTN3 restringe su expresión a las fibras de tipo II o de contracción rápida. El gen ACTN3 produce la proteína alfa-actina-3, que permite una contracción más eficaz de los músculos, característica imprescindible para la excelencia en deportes donde son necesarias la fuerza y la rapidez de contracción muscular. En este gen, el cambio polimórfico de un nucleótido C → T en la posición 1747 del exón 16 provoca una mutación sin sentido donde una arginina R es remplazada por un codón de paro (X) prematuro (R577X), lo que ocasiona una pérdida de la función de dicha proteína. En los portadores homocigotos para el polimorfismo 577XX, la pérdida de la proteína ACTN3 implicaría desventajas notables en la contracción de las fibras musculares, especialmente las de tipo II, por lo que el gen ACTN2 se sobreexpresa para tratar de compensar la pérdida de la proteína ACTN3. Por tanto, atletas con la variación atlélica 577RR o 577RX cuentan con una ventaja genética asociada a mejor desempeño de actividades físicas que requieran explosión y fuerza muscular, comparados con individuos con genotipos 577XX. Las investigaciones han mostrado asociación del genotipo 577XX con una fuerza máxima y una potencia absoluta mayor con respecto a los otros genotipos en mujeres, efecto que no se presenta en los varones. En atletas de élite italianos la presencia de este genotipo se asoció a una mayor masa muscular, mientras en población general en Grecia se encontró con mayor frecuencia en personas con habilidades de sprinter. En otros estudios, en que se compararon las frecuencias genotípicas en atletas de élite en pruebas de velocidad o resistencia y población abierta clínicamente sana, se encontró menor frecuencia del genotipo XX en los atletas (6%) que en la población general (18%).
++
El gen AMPD1, localizado en el cromosoma 1, sitio p13-p21, codifica para la isoforma M de la AMP deaminasa, también denominada mioadenilato deaminasa. Esta isoforma constituye 95% de la AMPD total y está expresada principalmente en las fibras musculares de tipo II. Durante las contracciones musculares intensas y cortas, la demanda de ATP excede la capacidad de resíntesis y genera una depleción de 40% de sus niveles en la célula muscular. Como consecuencia de ello, el ADP se incrementa, lo que caracteriza la fatiga muscular y se traduce en inhibición del proceso contráctil. Para tratar de minimizar la acumulación de ADP y producir ATP, el intenso trabajo metabólico del músculo esquelético activa la reacción catalizada por la AMP deaminasa: AMP ⇔ IMP + NH3. La AMP deaminasa cataliza la conversión del AMP en IMP (inosina monofosfato) y libera una molécula de amonio (NH3). Esta reacción minimiza indirectamente la acumulación de ADP al metabolizar el AMP y favorecer el balance de la reacción catalizada por la adenilato cinasa hacia la producción de ATP y AMP: 2 ADP ⇔ ATP + AMP.
++
La transición del nucleótido 34 del gen de la AMPD1, de una C por T (polimorfismo C34T), ocasiona una mutación sin sentido que convierte el codón CAA, que codifica para glutamina en codón de paro TAA, con lo que se genera una proteína truncada. Por tanto, los genotipos TT o CT presentan niveles disminuidos (hasta 1% para los homocigotos TT) de la actividad de la mioadenilato deaminasa, comparados con individuos homocigotos al alelo CC. Esto se traduce en una capacidad reducida para el ejercicio, ya que durante su práctica se producen calambres musculares, dolor y fatiga muscular debido a la acumulación excesiva de ADP y AMP. En personas caucásicas la prevalencia del genotipo TT es de 2%, de 20% para los heterocigotos. Al asociarse el polimorfismo C34T de AMPD1 con funciones respiratorias en individuos sedentarios sometidos a un entrenamiento de 20 semanas, los valores de VO2 máx y VCO2 máx fueron menores en individuos con el genotipo TT, lo que demuestra una adaptación ventilatoria menor en respuesta al entrenamiento.
+++
Gen de la enzima conversiva de angiotensina
++
El sistema renina-angiotensina desempeña un papel importante en la homeostasis del sistema circulatorio. Producida por las células yuxtaglomerulares renales, la renina hidroliza el angiotensinógeno y genera angiotensina I, que se convertirá en angiotensina II por acción de la enzima conversiva de angiotensina (ECA). La angiotensina II es un potente vasoconstrictor que provoca un incremento de la presión sanguínea. El sistema renina-angiotensina también se expresa en células musculares y cardiacas; además, la ECA hidroliza y, por tanto, inactiva a la bradicinina, que es un vasodilatador. El gen de la ECA se localiza en el cromosoma 17, sitio q23, y en su intrón 16 existe una variante génica de inserción (I) o deleción (D) de 287 pb. El alelo D se asocia a mayores niveles circulatorios de ECA y, por tanto, a incrementos en la presión y flujo sanguíneo. Algunos estudios han demostrado mayor frecuencia del alelo I en atletas que practican deportes de resistencia, así como mayor frecuencia del alelo D en los que se dedican a deportes que requieren fuerza explosiva muscular. La hipertrofia cardiaca del ventrículo izquierdo, característica de los atletas de élite, se asocia con los fenotipos DD y DI. Un total de 70.4% de los atletas con fenotipo DD, 42% de los individuos con fenotipo DI y 0% de aquéllos con genotipo II alcanzan los criterios de hipertrofia del ventrículo izquierdo; la hipertrofia es significativamente mayor en los atletas con genotipo DD que en los heterocigotos DI. Este efecto se debe a la activación del sistema RA en el corazón, en respuesta al ejercicio, y a que la angiotensina II en el corazón actúa como un factor de crecimiento celular. Algunos estudios han demostrado que el sistema renina-angiotensina del músculo esquelético es capaz de influir en el equilibrio energético corporal general. Al evaluar la eficiencia de contracción muscular en individuos varones sanos, después de 11 semanas de entrenamiento se observó que la eficiencia energética aumentó 8.6% en individuos con genotipo II y sólo 0.39% en aquéllos con genotipo DD. Este efecto se debe a una asociación entre el fenotipo DD del gen de la ECA y un porcentaje promedio mayor de fibras tipo I (~50% vs. ~30% en genotipo II), las cuales son más eficientes que las fibras de contracción rápida cuando la actividad contráctil lleva a cabo velocidades reducidas. La evaluación del efecto sobre el VO2 máx del polimorfismo I/D del gen de la ECA, en 58 mujeres posmenopáusicas mostró asociación del genotipo II con el máximo VO2 máx desarrollado (6.3 ml/kg/min) que fue 23% más que el del genotipo DD, que desarrolló 3.3 ml/kg/min, 11% más que el genotipo ID. En este grupo la diferencia en el VO2 máx no pudo atribuirse a diferencias en el volumen sistólico o carga cardiaca. En resumen, el alelo I mejora el desempeño de los atletas en pruebas de resistencia, efecto mediado por una mayor eficiencia mecánica de los músculos esqueléticos y la proporción de las fibras musculares. Por otro lado, el alelo D correlacionó con un fenotipo de fuerza muscular mediado por un efecto de hipertrofia muscular secundaria a un aumento plasmático y tisular de los niveles de angiotensina II.
++
La ECA no sólo es responsable de la génesis de la angiotensina II, sino también de la degradación de bradicinina. Por ello, los niveles de bradicinina presentan una relación inversa con los polimorfismos I/D del gen de la ECA; esto es, a mayor concentración de ECA (alelo DD) menores niveles de bradicinina, y a menores niveles de ECA (alelo II) mayor concentración de bradicinina. Los niveles de bradicinina influyen en la internalización de glucosa y el flujo sanguíneo, y previenen el crecimiento del ventrículo izquierdo del corazón vía la activación de los receptores 2 de bradicinina (B2R). La variante −9/+9 del B2R se localiza en el exón 1 del gen BDKRB2, ubicado en el cromosoma 14, sitio q32.1−q32.2, y se refiere a la ausencia (−9) de un segmento de 9 pb asociado con alta actividad transcripcional que tiene como consecuencia una alta expresión del receptor y, por tanto, una respuesta elevada al agonista. Como la bradicinina modula la respuesta de hipertrofia del ventrículo izquierdo, es de esperar que las variaciones alélicas del gen BDKRB2 alteren la magnitud de este crecimiento muscular. El estudio de los polimorfismos I/D del gen de la ECA y −9/+9 del gen BDKRB2 en 109 reclutas de la armada británica sometidos a un entrenamiento de 10 semanas, demostró una tendencia a la hipertrofia ventricular en los individuos con genotipos DD del gen de la ECA (+11.2 g frente a +6.9 g en individuos con genotipo II; p = 0.09) y genotipo +9/+9 en el gen BDKRB2 (13.7 g frente a 4.6 g para el genotipo −9/−9; p = 0.009). La respuesta hipertrófica observada revela que la masa cardiaca de los individuos con bajas concentraciones de bradicinina y baja actividad transcripcional del B2R (genotipos DD y +9/+9) aumenta 9.5%, mientras que el ventrículo izquierdo de los individuos con altas concentraciones de bradiquinina y alta actividad transcripcional de B2R (genotipos II y −9/−9) aumenta sólo 0.4%. Por tanto, el efecto de la ECA en la hipertrofia cardiaca del ventrículo izquierdo es mediado, por lo menos en parte, por la acción de la bradicinina. La eficiencia de contracción muscular, o eficiencia delta, también parece estar afectada por los genotipos de BDKRB2. En 115 individuos sanos y 81 atletas olímpicos británicos, se valoró la eficiencia de contracción muscular como porcentaje de cambio en el trabajo realizado por minuto/porcentaje de alteración en el gasto energético por minuto en una bicicleta ergométrica. En los individuos sanos, la eficiencia delta mostró asociación de los genotipos +9/+9, +9/−9 y −9/−9 con los porcentajes obtenidos: 23.84 ± 2.41 frente a 24.25 ± 2.81 frente a 26.05 ± 2.26%, respectivamente; p = 0.002). Además, se valoró en conjunto la influencia del genotipo DD/II del gen de la ECA con el genotipo +9/+9 y −9/−9 del gen BDKRB2 y se obtuvo que entre los homocigotos al genotipo DD, la eficiencia delta muestra una tendencia a ser mayor en los homocigotos −9/−9. Aun en los individuos con genotipo II para ACE, la presencia del alelo −9/−9 influyó en la eficiencia delta de manera positiva (24.34 ± 2.51 frente a 24.26 ± 2.41 frente a 27.41 ± 2.61% para los genotipos +9/+9 frente a +9/−9 frente a −9/−9; p = 0.005). Por tanto, individuos con el genotipo II y alelo −9/−9 muestran la mayor eficiencia comparados con el genotipo DD y alelo +9/+9. En conjunto, estos datos sugieren que los polimorfismos I/D del gen de la ECA se asocian a variables funcionales en genes adyacentes y colaboran en las características fenotípicas del atleta.
++
En 2004, un sujeto alemán fue diagnosticado con una mutación en ambas copias del gen que produce la miostatina, lo que lo hacía considerablemente más fuerte que su madre, quien presentaba la mutación en un solo alelo. Más recientemente, un niño estadounidense nacido en 2005 fue diagnosticado de la misma enfermedad. Este factor de crecimiento inhibe el crecimiento de los músculos, por lo que cualquier variación genética en dicho gen que disminuya su expresión puede tener un efecto directo en la fuerza muscular; sin embargo, hasta el momento no se ha demostrado ninguna asociación entre polimorfismos de este gen y el desarrollo de una mayor fuerza muscular, y sólo se han reportado mutaciones de forma esporádica (frecuencia menor a 1% en la población).
+++
Factor de crecimiento similar a la insulina tipo I
++
Como se mencionó anteriormente, el IGF-I desempeña un papel importante en la hipertrofia muscular y el desarrollo de fuerza muscular inducida por un entrenamiento con cargas. Un polimorfismo de repeticiones en microsatélite en la región promotora del gen se ha asociado a niveles sanguíneos mayores de IGF-I. Los individuos con la variante alélica 192 de este gen adquieren una fuerza y un desarrollo muscular mayores con entrenamientos de cargas que individuos no portadores de esta variación genética.