++
Las características distintivas de las procariotas son su tamaño relativamente pequeño, casi siempre del orden de 1 μm de diámetro, y la ausencia de una membrana nuclear. El DNA de casi todas las bacterias es circular con una longitud aproximada de 1 mm que constituye el cromosoma bacteriano. La mayor parte de las células procariotas posee un solo cromosoma. El DNA cromosómico se debe doblar más de 1 000 veces para acomodarse dentro de la membrana celular procariótica. Existe evidencia considerable que sugiere que quizá estos dobleces se realizan en forma ordenada, acercando ciertas regiones del DNA. La región especializada de la célula que contiene al DNA se denomina nucleoide y se puede observar con un microscopio electrónico o un microscopio de luz después de someter a la célula a un tratamiento especial para poder observarlo. Por lo tanto, sería un error concluir que la diferenciación subcelular, claramente delimitada por membranas en las eucariotas, no existe en las procariotas. De hecho, las procariotas, en algunos casos, forman estructuras subcelulares unidas a membranas con funciones especializadas como los cromatóforos de las bacterias fotosintéticas (cap. 2).
+++
Diversidad procariótica
++
El tamaño pequeño del cromosoma procariótico limita la cantidad de información genética que puede contener. La información más reciente basada en las secuencias del genoma indica que el número de genes dentro de una célula procariota varía de 468 en Mycoplasma genitalium a 7 825 en Streptomyces coelicolor y que muchos de estos genes codifican por funciones básicas como generación de energía, síntesis de macromoléculas y división celular. Las procariotas poseen relativamente pocos genes que permiten la adaptación fisiológica del microorganismo a su ambiente. El espectro de ambientes procarióticos potenciales es increíblemente amplio, por lo que las procariotas comprenden una categoría heterogénea de microorganismos especializados, cada uno adaptado a un entorno circunscrito bastante estrecho.
++
La gama de ambientes procarióticos se ilustra al considerar las estrategias utilizadas para generar energía metabólica. La principal fuente de energía para la vida es la luz solar. Algunas procariotas, como las bacterias púrpuras, convierten la energía lumínica en energía metabólica sin producción de oxígeno. Otras, como las bacterias verde-azules (cianobacterias) producen oxígeno que proporciona energía a través de la respiración en ausencia de luz. Los microorganismos aerobios dependen de la respiración en presencia de oxígeno para obtener energía. Algunos microorganismos anaerobios utilizan aceptores de electrones distintos del oxígeno en la respiración. Muchos anaerobios llevan a cabo fermentaciones, de donde obtienen la energía a partir de la reorientación metabólica de los sustratos químicos para el crecimiento. La gran variedad química de sustratos potenciales para el crecimiento tanto aerobio como anaerobio se refleja en la diversidad de las procariotas que se han adaptado a su utilización.
+++
Comunidades procarióticas
++
Una estrategia útil de supervivencia para los microorganismos especializados es pertenecer a consorcios, organizaciones en las que las características fisiológicas de los diferentes organismos contribuyen a la supervivencia del grupo como un todo. Si los organismos dentro de una comunidad interrelacionada desde el punto de vista físico se derivan directamente a partir de una célula, la comunidad es un clon que puede contener hasta 108 células. La biología de esta comunidad difiere considerablemente de la de una sola célula. Por ejemplo, el gran número de células prácticamente asegura que en el clon existe cuando menos una célula que posee una variante de cualquier gen en el cromosoma. Por lo tanto, la variabilidad genética (la fuente del proceso evolutivo llamado selección natural) se encuentra asegurada en un clon. Entre mayor sea el número de células dentro de los clones, mayor es la probabilidad de ofrecer protección fisiológica cuando menos a algún miembro del grupo. Por ejemplo, los polisacáridos extracelulares confieren protección contra algunos elementos potencialmente mortales como los antibióticos o iones de metales pesados. La gran cantidad de polisacáridos producidos por numerosas células dentro de un clon permite que las que están en el interior sobrevivan al contacto con un elemento mortal a una concentración que aniquilaría a células individuales.
++
Muchas bacterias utilizan un mecanismo de comunicación intercelular llamado Quorum sensing o sensor de quórum para regular la transcripción de los genes que participan en diversos procesos fisiológicos, como bioluminiscencia, transferencia de plásmidos conjugativos y producción de los factores de virulencia. El sensor de quórum depende de la producción de una o más moléculas de señalización que se pueden difundir en el medio y son llamadas autoinductores o feromonas y permiten a la bacteria vigilar su propia densidad de población celular. Es un ejemplo del comportamiento multicelular en las procariotas.
++
Una característica distintiva de las procariotas es su capacidad de intercambio de pequeños paquetes de información genética. Esta información es llevada en los plásmidos, elementos genéticos pequeños y especializados que se pueden multiplicar cuando menos dentro de una línea celular procariótica. En algunos casos los plásmidos se transfieren de una célula a otra y por lo tanto, llevan consigo grupos de información genética especializada a través de una población. Algunos plásmidos exhiben un espectro amplio de hospedadores que les permite transmitir grupos de genes a distintos microorganismos. Algunos de los más importantes son los plásmidos de resistencia farmacológica, que inducen resistencia bacteriana al tratamiento con antimicrobianos.
++
La estrategia de supervivencia de una sola línea celular procariótica conduce a un espectro de interacciones con otros microorganismos. Éstas comprenden relaciones simbióticas que llevan a complejos intercambios nutricionales entre los microorganismos dentro del intestino humano. Estos intercambios benefician tanto a los microorganismos como a sus hospedadores humanos. Algunas veces las interacciones parasitarias son nocivas para el hospedador. La simbiosis o el parasitismo avanzado provocan la pérdida de ciertas funciones que no permiten el crecimiento del simbionte o parásito, independientemente de su hospedador.
++
Por ejemplo, los micoplasmas son parásitos procariotas que han perdido la capacidad de sintetizar una pared celular. La adaptación de estos microorganismos a su ambiente parasitario ha tenido como resultado la incorporación de una cantidad considerable de colesterol en sus membranas celulares. El colesterol, que no se observa en otras procariotas, es asimilado a partir del ambiente metabólico del hospedador. La pérdida de la función también se ejemplifica por los parásitos intracelulares obligados, clamidias y rickettsias. Estas bacterias son muy pequeñas (0.2 a 0.5 μm de diámetro) y dependen de una célula hospedadora que les suministra metabolitos esenciales y coenzimas. Esta pérdida de la función se refleja por la presencia de un cromosoma más pequeño con muy pocos genes (cuadro 7-1).
++
Los mejores ejemplos de simbiontes bacterianos son los cloroplastos y las mitocondrias, que son los organelos especializados en la producción de energía de las eucariotas. Numerosas pruebas indican que los antecesores de estos organelos eran endosimbiontes, es decir, procariotas que establecieron simbiosis dentro de la membrana celular de un hospedador eucariótico ancestral. La presencia de múltiples copias de los organelos quizá contribuyó al tamaño relativamente grande de las células eucarióticas y a su potencial de especialización, rasgo que finalmente se ha reflejado en la evolución de los microorganismos multinucleares diferenciados.
+++
Clasificación de las procariotas
++
Para comprender cualquier grupo de microorganismos, es necesario hacer una clasificación. Un buen sistema de clasificación permite al científico elegir las características con las que se puede categorizar con rapidez y precisión cualquier microorganismo nuevo. La categorización permite pronosticar muchos rasgos adicionales que comparten otros miembros de la misma categoría. En el ámbito hospitalario, la clasificación satisfactoria de un microorganismo patógeno ofrece la vía más directa para eliminarlo. Asimismo, la clasificación permite conocer las relaciones existentes entre diversos microorganismos y esta información tiene un gran valor práctico. Por ejemplo, un microorganismo patógeno se podrá eliminar durante un tiempo relativamente largo si su hábitat es ocupado por una variedad no patógena.
++
En el capítulo 3 se describen los principios de la clasificación procariótica. Al principio es importante reconocer que cualquier característica procariótica puede servir como criterio potencial de clasificación. Sin embargo, no todos los criterios son tan efectivos para agrupar microorganismos. Por ejemplo, la expresión de DNA constituye un criterio inútil para distinguir los microorganismos puesto que todas las células lo contienen. La presencia de un plásmido con un espectro amplio de hospedadores no es un criterio útil puesto que estos plásmidos existen en distintos hospedadores y no es necesario que existan todo el tiempo. Los criterios útiles pueden ser estructurales, fisiológicos, bioquímicos o genéticos. Las esporas, estructuras celulares especializadas que permiten la supervivencia en ambientes extremos, son criterios estructurales útiles para la clasificación puesto que sólo subgrupos bien clasificados de bacterias forman esporas. Algunos grupos de bacterias se pueden subdividir con base en su potencial para fermentar ciertos carbohidratos. Estos criterios son poco efectivos cuando se aplican a otros grupos bacterianos que carecen de potencial de fermentación. Existe una prueba bioquímica, la tinción de Gram, que constituye un criterio efectivo de clasificación puesto que la respuesta al colorante refleja diferencias fundamentales y complejas en la superficie celular bacteriana que dividen a la mayor parte de las bacterias en dos grupos principales.
++
Los criterios genéticos cada vez se utilizan más en la clasificación bacteriana y muchos de estos avances han sido posibles gracias al desarrollo de tecnologías basadas en DNA. Actualmente es posible diseñar sondas de DNA o realizar análisis de amplificación del DNA (p. ej., reacción en cadena de la polimerasa [PCR, polymerase chain reaction]) que identifican rápidamente microorganismos que poseen regiones genéticas específicas con un linaje común. Al comparar las secuencias del DNA de algunos genes se pudieron conocer las relaciones filogenéticas entre las procariotas. Es posible rastrear los linajes celulares ancestrales y agrupar a los microorganismos con base en sus afinidades evolutivas. A partir de estas investigaciones surgieron conclusiones sorprendentes. Por ejemplo, la comparación de las secuencias del citocromo c sugiere que todos los organismos eucariotas, incluidos los seres humanos, se originaron a partir de uno de tres grupos de bacterias fotosintéticas púrpuras. Esta conclusión explica parcialmente el origen evolutivo de las eucariotas, pero no toma en cuenta por completo la suposición, por lo general aceptada, de que la célula eucariótica se deriva de la fusión evolutiva de distintas líneas celulares procarióticas.
+++
Bacterias y arqueobacterias: subdivisiones principales dentro de las procariotas
++
Un logro importante en la filogenia molecular ha sido demostrar que las procariotas pertenecen a uno de dos grupos principales. La mayor parte de las investigaciones se ha orientado hacia un grupo, las bacterias. El otro grupo, las arqueobacterias, ha recibido menos atención hasta hace poco, en parte a causa de que muchos de sus representantes son difíciles de estudiar en el laboratorio. Por ejemplo, algunas arqueobacterias mueren al contacto con el oxígeno y otras crecen a una temperatura que excede la del agua en ebullición. Antes de contar con indicios moleculares, los principales subgrupos de arqueobacterias parecían diferentes. Las metanógenas llevan a cabo una respiración anaerobia que genera metano; las halófilas necesitan una concentración muy elevada de sal para crecer, y las termoacidófilas necesitan una temperatura elevada y gran acidez. Ahora se sabe que estas procariotas comparten rasgos bioquímicos como la pared celular o los componentes de la membrana que los colocan en un grupo completamente aparte del de los demás microorganismos vivientes. Un rasgo intrigante que comparten las arqueobacterias y eucariotas es la presencia de intrones dentro de los genes. No se ha establecido la función de los intrones (segmentos de DNA que interrumpen al DNA codificante dentro de los genes). Lo que se sabe es que los intrones representan una característica fundamental que comparte el DNA de las arqueobacterias y eucariotas. Este rasgo común ha originado la hipótesis de que, al igual que las mitocondrias y cloroplastos parecen ser derivados evolutivos de las bacterias, el núcleo eucariótico se originó a partir de una arqueobacteria antecesora.