Skip to Main Content

++

INTRODUCCIÓN

++

La ciencia de la genética define y analiza la herencia de una amplia gama de funciones fisiológicas que constituyen las propiedades del organismo. La unidad básica de la herencia es el gen, un segmento de ácido desoxirribonucleico (DNA) que codifica en su secuencia de nucleótidos información para propiedades fisiológicas específicas. El método tradicional de la genética ha sido identificar los genes con base en su contribución al fenotipo, o las propiedades estructurales colectivas y fisiológicas de un organismo. Una propiedad fenotípica podría ser el color de los ojos en los seres humanos o la resistencia a los antibióticos en una bacteria, que por lo general se observan al nivel de cada organismo. La base química para la variación del fenotipo es un cambio en el genotipo o alteración en la secuencia de DNA, en un gen o en la organización de los genes.

++

En el decenio de 1930 se sugirió la participación del DNA como elemento fundamental de la herencia en un experimento realizado por Frederick Griffith. En este experimento (fig. 7-1) destruyó un Streptococcus pneumoniae virulento de tipo III-S (que poseía una cápsula), cuando se le inyectó a un ratón junto con neumococo vivo pero no virulento de tipo II-R (que carecía de cápsula), ocasionó una infección letal en la cual se recuperó el neumococo tipo III-S viable. La implicación fue que algunas entidades químicas transformaron la cepa viva, no virulenta a un fenotipo virulento. Un decenio más tarde, Avery, MacLeod y McCarty descubrieron que el DNA era el agente transformador. Este conocimiento constituye el fundamento de la biología molecular, tal como la conocemos hoy en día. Investigaciones subsiguientes con bacterias revelaron la presencia de enzimas de restricción, proteínas que desdoblan el DNA en sitios específicos, dando origen a fragmentos de restricción de DNA. Los plásmidos se identificaron como elementos genéticos pequeños que transportan genes y son capaces de replicación independiente en bacterias y levaduras. La introducción de un fragmento restrictivo de DNA en el interior de un plásmido permite la amplificación de dicho fragmento muchas veces. La amplificación de regiones específicas de DNA también puede lograrse con enzimas bacterianas utilizando la reacción en ca dena de la polimerasa (PCR, polymerase chain reaction), otro método basado en enzimas de amplificación de ácido nucleico. El DNA amplificado por estos medios y digerido con enzimas de restricción apropiadas puede insertarse en plásmidos. Los genes pueden colocarse bajo el control de promotores bacterianos de alta expresión, que codifican proteínas que se expresan en concentraciones elevadas. La genética bacteriana ha fomentado el desarrollo de la ingeniería genética tanto en células procariotas como eucariotas. Esta tecnología es causante del notable avance en el campo de la medicina que ha ocurrido hoy en día.

++
FIGURA 7-1

Experimento de Griffiths que muestra la evidencia para un factor transformador, más tarde identificado como DNA. En una serie de experimentos, se inyectó Streptococcus pneumoniae a ratones vivos ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.