++
El ciclo del ácido cítrico no sólo es una vía para la oxidación de unidades de dos carbonos, sino que también es una vía importante para la interconversión de metabolitos que surgen por transaminación y desaminación de aminoácidos (capítulos 28 y 29), y proporciona los sustratos para la síntesis de aminoácidos mediante transaminación (capítulo 27), así como para gluconeogénesis (capítulo 20) y síntesis de ácidos grasos (capítulo 23). Dado que funciona en procesos tanto oxidativos como sintéticos, es anfibólico (figura 16-4).
++
+++
El ciclo del ácido cítrico participa en la gluconeogénesis, transaminación y desaminación
++
Todos los intermediarios del ciclo son en potencia glucogénicos, porque pueden dar lugar a oxaloacetato y, por ende, a producción neta de glucosa (en hígado y riñones, los órganos que llevan a cabo la gluconeogénesis; capítulo 19). La enzima clave que cataliza la transferencia neta hacia afuera del ciclo hacia la gluconeogénesis es la fosfoenolpiruvato carboxicinasa, la cual cataliza la descarboxilación de oxaloacetato hacia fosfoenolpiruvato; el GTP actúa como el donador de fosfato (figura 19-1). El GTP que se requiere para esta reacción es proporcionado (en el hígado y los riñones) por la isoenzima dependiente de GDP de la succinato tirosinasa. Esto asegura que el oxaloacetato no se retire del ciclo para gluconeogénesis si esto llevaría a la disminución de intermediarios del ciclo del ácido cítrico y, por ende, generación reducida de ATP.
++
La transferencia neta hacia el ciclo ocurre como resultado de varias reacciones. Entre las más importantes de esas reacciones anapleróticas, está la formación de oxaloacetato mediante la carboxilación de piruvato, catalizada por la piruvato carboxilasa (figura 16-4). Esta reacción es importante para mantener una concentración adecuada de oxaloacetato para la reacción de condensación con acetil-CoA. Si esta última se acumula, actúa como activador alostérico de la piruvato carboxilasa y como inhibidor de la piruvato deshidrogenasa, lo que asegura un aporte de oxaloacetato. El lactato, un importante sustrato para la gluconeogénesis, entra al ciclo por medio de oxidación hacia piruvato y después carboxilación hacia oxaloacetato. El glutamato y la glutamina son sustratos anapleróticos importantes porque dan α-cetoglutarato como resultado de las reacciones catalizadas por la glutaminasa y la glutamato deshidrogenasa. La transaminación de aspartato lleva directamente a la formación de oxaloacetato, y diversos compuestos que son metabolizados para dar propionil CoA, que puede ser carboxilada e isomerizada a succinil CoA, también son sustratos anapleróticos importantes.
++
Las reacciones de aminotransferasa (transaminasa) forman piruvato a partir de alanina, oxaloacetato a partir de aspartato, y α-cetoglutarato a partir de glutamato. Dado que estas reacciones son reversibles, el ciclo también sirve como una fuente de esqueletos de carbono para la síntesis de estos aminoácidos. Otros aminoácidos contribuyen a la gluconeogénesis porque sus esqueletos de carbono dan origen a intermediarios del ciclo del ácido cítrico. La alanina, cisteína, glicina, hidroxiprolina, serina, treonina y triptófano dan piruvato; la arginina, histidina, glutamina y prolina dan α-cetoglutarato; la isoleucina, metionina y valina dan succinil-CoA; la tirosina y fenilalanina dan fumarato (figura 16-4).
++
El ciclo del ácido cítrico en sí no proporciona una vía para la oxidación completa de esqueletos de carbono de aminoácidos que dan lugar a intermediarios como α-cetoglutarato, succinil-CoA, fumarato y oxaloacetato, porque esto da lugar a un incremento de la cantidad de oxaloacetato. Para que ocurra oxidación completa, el oxaloacetato debe pasar por fosforilación y carboxilación a fosfoenolpiruvato (a expensas de GTP) y después por desfosforilación hacia piruvato (catalizada por la piruvato cinasa) y descarboxilación oxidativa hacia acetil CoA (catalizada por la piruvato deshidrogenasa).
++
En rumiantes, cuyo principal combustible metabólico son los ácidos grasos de cadena corta formados mediante fermentación bacteriana, tiene especial importancia la conversión de propionato, el principal producto glucogénico de la fermentación en el rumen, en succinil-CoA por medio de la vía de la metilmalonil-CoA (figura 19-2).
+++
El ciclo del ácido cítrico participa en la síntesis de ácidos grasos
++
La acetil-CoA, formada a partir del piruvato mediante la acción de la piruvato deshidrogenasa, es el principal sustrato para la síntesis de ácidos grasos de cadena larga en no rumiantes (figura 16-5). (En rumiantes, la acetil-CoA se deriva de manera directa del acetato). La piruvato deshidrogenasa es una enzima mitocondrial, y la síntesis de ácidos grasos es una vía citosólica; la membrana mitocondrial es impermeable a acetil-CoA; a fin de que el acetil-CoA esté disponible en el citosol, el citrato es transportado de la mitocondria al citosol y entonces es dividido en una reacción catalizada por la ATP-citrato liasa (figura 16-5). El citrato sólo está disponible para transporte hacia afuera de la mitocondria cuando la aconitasa es inhibida por su producto y, por ende, saturada con su sustrato, de modo que el citrato no puede canalizarse directamente desde la citrato sintasa hacia la aconitasa. Esto asegura que el citrato se use para la síntesis de ácidos grasos sólo cuando hay una cantidad adecuada para asegurar actividad continua del ciclo.
++
++
El oxaloacetato liberado por la citrato liasa no puede volver a entrar a la mitocondria, sino que es reducido a malato, a expensas de NADH, y el malato pasa por descarboxilación oxidativa hacia piruvato, lo cual reduce el NADP+ a NADPH. Esta reacción, catalizada por la enzima málica, es la fuente de la mitad del NADPH que se requiere para la síntesis de ácidos grasos (el resto es proporcionado por la vía de la pentosa fosfato, capítulo 20). El piruvato entra a la mitocondria, y es carboxilado a oxaloacetato por la piruvato carboxilasa, una reacción dependiente de ATP en la cual la coenzima es la vitamina biotina.
+++
La regulación del ciclo del ácido cítrico depende principalmente de un aporte de cofactores oxidados
++
En casi todos los tejidos, donde la función primaria del ciclo del ácido cítrico yace en el metabolismo productor de energía, el control respiratorio por medio de la cadena respiratoria y la fosforilación oxidativa regula la actividad del ciclo del ácido cítrico (capítulo 13). De este modo, la actividad es inmediatamente dependiente del aporte de NAD+ que, a su vez, debido al estrecho acoplamiento entre la oxidación y fosforilación, depende de la disponibilidad de ADP y, por ende, finalmente del índice de utilización de ATP en trabajo químico y físico. Además, enzimas individuales del ciclo están reguladas. Los sitios más probables para regulación son las reacciones no de equilibrio catalizadas por la piruvato deshidrogenasa, citrato sintasa, isocitrato deshidrogenasa y α-cetoglutarato deshidrogenasa. Las deshidrogenasas son activadas por Ca2+, que aumenta de concentración durante la contracción muscular y secreción por otros tejidos, cuando hay aumento de la demanda de energía. En un tejido como el cerebro, que depende en su mayor parte de carbohidratos para el aporte de acetil-CoA, el control del ciclo del ácido cítrico puede ocurrir en la piruvato deshidrogenasa. Varias enzimas se encargan de la situación en cuanto a energía, como se demuestra por las proporciones [ATP]/[ADP] y [NADH]/[NAD+]. De este modo, hay inhibición alostérica de la citrato sintasa por el ATP y acil-CoA grasa de cadena larga. La activación alostérica de la isocitrato deshidrogenasa dependiente de NAD, mitocondrial, por ADP, es contrarrestada por ATP y NADH. El complejo de α-cetoglutarato deshidrogenasa está regulado de la misma manera que la piruvato deshidrogenasa (figura 17-6). La succinato deshidrogenasa es inhibida por el oxaloacetato, y la disponibilidad de este último, según se controla por la malato deshidrogenasa, depende de la proporción [NADH]/[NAD+]. Dado que la Km para oxaloacetato de la citrato sintasa es del mismo orden de magnitud que la concentración intramitocondrial, es probable que la concentración de oxaloacetato controle el índice de formación de citrato.
++
La hiperamonemia, como ocurre en la enfermedad hepática avanzada y en varias enfermedades genéticas (raras) del metabolismo de aminoácidos, lleva a pérdida del conocimiento, coma y convulsiones, y puede ser mortal. Esto se debe mayormente al retiro de α-cetoglutarato para formar glutamato (lo cual es catalizado por la glutamato deshidrogenasa) y después glutamina (lo cual es catalizado por la glutamina sintetasa), lo que da pie a concentraciones reducidas de todos los intermediarios del ciclo del ácido cítrico y, por ende, menor generación de ATP. El equilibrio de la glutamato deshidrogenasa está finamente establecido, y la dirección de la reacción depende de la proporción de NAD+:NADH y la concentración de iones amonio. Además, el amoníaco inhibe la α-cetoglutarato deshidrogenasa, y posiblemente también la piruvato deshidrogenasa.