++
La figura 24-1 esboza las principales vías de la biosíntesis de triacilglicerol y fosfoglicerol. Las sustancias importantes, como los triacilgliceroles, la fosfatidilcolina, la fosfatidiletanolamina, el fosfatidilinositol y la cardiolipina, un constituyente de las membranas mitocondriales, se forman a partir del glicerol-3-fosfato. Suceden puntos de ramificación importantes en la vía en los pasos de fosfatidato y diacilglicerol. A partir de dihidroxiacetona fosfato se derivan fosfogliceroles que contienen un enlace éter (―C―O―C―); los mejor conocidos entre ellos son los plasmalógenos y el factor activador de plaquetas (PAF). El glicerol 3-fosfato y el dihidroxiacetona fosfato son intermediarios en la glucólisis, y hacen una conexión muy importante entre el metabolismo de carbohidratos y de lípidos (capítulo 14).
++
+++
El fosfatidato es el precursor común en la biosíntesis de triacilgliceroles, muchos fosfogliceroles y cardiolipina
++
Antes de que tanto el glicerol como los ácidos grasos se puedan incorporar hacia acilgliceroles, es necesario que se activen por ATP. La glicerol cinasa cataliza la activación de glicerol hacia sn-glicerol 3-fosfato. Si la actividad de esta enzima falta o es baja, como en músculo o tejido adiposo, la mayor parte del glicerol 3-fosfato se forma a partir de dihidroxiacetona fosfato por medio de la glicerol-3-fosfato deshidrogenasa (figura 24-2).
++
+++
Biosíntesis de triacilgliceroles
++
Dos moléculas de acetil-CoA, formadas por la activación de ácidos grasos por la acil-CoA sintetasa (capítulo 22), se combinan con glicerol-3-fosfato para formar fosfatidato (1,2-diacilglicerol fosfato). Esto tiene lugar en dos etapas, catalizadas por la glicerol-3-fosfato aciltransferasa y la 1-acilglicerol-3-fosfato aciltransferasa. El fosfatidato es convertido por la fosfatidato fosfohidrolasa (también llamada fosfatidato fosfatasa [PAP]) y la diacilglicerol aciltransferasa (DGAT) en 1,2-diacilglicerol, y después en triacilglicerol. Las lipinas, una familia de tres proteínas, tienen actividad de PAP y actúan también como factores de transcripción que regulan la expresión de genes involucrados en el metabolismo de lípidos. La DGAT cataliza el único paso específico para la síntesis de triacilglicerol y se cree que es limitante en casi todas las circunstancias. En la mucosa intestinal, la monoacilglicerol aciltransferasa convierte el monoacilglicerol en 1,2-diacilglicerol en la vía del monoacilglicerol. Casi toda la actividad de estas enzimas reside en el retículo endoplásmico, pero parte se encuentra en las mitocondrias. La fosfatidato fosfohidrolasa se encuentra sobre todo en el citosol, pero la forma activa de la enzima está unida a membrana.
+++
Biosíntesis de fosfolípidos
++
En la biosíntesis de fosfatidilcolina y fosfatidiletanolamina (figura 24-2), la colina o la etanolamina debe activarse primero mediante fosforilación por ATP seguida por enlace a difosfato de citidina (CDP). La CDP-colina o CDP-etanolamina resultante reacciona con 1,2-diacilglicerol para formar fosfatidilcolina o fosfatidiletanolamina, respectivamente. La fosfatidilserina se forma a partir de la fosfatidiletanolamina de modo directo por medio de reacción con serina (figura 24-2). La fosfatidilserina puede volver a formar fosfatidiletanolamina mediante descarboxilación. Una vía alternativa en el hígado permite que la fosfatidiletanolamina dé lugar de manera directa a fosfatidilcolina por medio de metilación progresiva del residuo etanolamina. A pesar de estas fuentes de colina, se considera que es un nutriente esencial en muchas especies de mamíferos, aunque esta certeza no se ha establecido en humanos.
++
La disponibilidad de FFA impulsa la regulación de la biosíntesis de triacilglicerol, fosfatidilcolina y fosfatidiletanolamina. Los FFA que escapan a la oxidación se convierten de preferencia en fosfolípidos y cuando este requerimiento se satisface se usan para la síntesis de triacilglicerol.
++
Un fosfolípido presente en las mitocondrias es la cardiolipina (difosfatidilglicerol; figura 21-10), la cual se forma a partir del fosfatidilglicerol que, a su vez, se sintetiza a partir del CDP-diacilglicerol (figura 24-2) y glicerol 3-fosfato de acuerdo con el esquema que se muestra en la figura 24-3. La cardiolipina, que se encuentra en la membrana interna de las mitocondrias, tiene una participación clave en la estructura y función mitocondriales, y se cree también que participa en la muerte celular programada (apoptosis).
++
+++
Biosíntesis de glicerol éter fosfolípidos
++
En los glicerol éter fosfolípidos, uno o más de los carbonos del glicerol está fijo a una cadena de hidrocarburo mediante un enlace éter en lugar de un enlace éster. Los plasmalógenos y el factor activador de plaquetas son ejemplos importantes de este tipo de lípido. La vía biosintética se encuentra en los peroxisomas. El fosfato de dihidroxiacetona es el precursor de la porción glicerol (figura 24-4). Este compuesto se combina con acil-CoA para dar 1-acildihidroxiacetona fosfato y el enlace éter se forma en la reacción siguiente, y origina 1-alquildihidroxiacetona fosfato, que luego se convierte en 1-alquilglicerol 3-fosfato. Después de acilación adicional en la posición 2, el 1-alquil-2-acilglicerol 3-fosfato (análogo al fosfatidato en la figura 24-2) resultante se hidroliza para dar el derivado glicerol libre. Los plasmalógenos, que comprenden gran parte de los fosfolípidos en las mitocondrias, se forman por desaturación del derivado 3-fosfoetanolamina análogo (figura 24-4). El factor activador de plaquetas (PAF) (1-alquil-2-acetil-sn-glicerol-3-fosfocolina) se sintetiza a partir del derivado 3-fosfocolina correspondiente. Se forma en muchas células sanguíneas y en otros tejidos, y agrega plaquetas a concentraciones de apenas 10−11 mol/L. También tiene propiedades hipotensivas y ulcerogénicas, y participa en diversas respuestas biológicas, entre ellas inflamación, quimiotaxis y fosforilación de proteína.
++
+++
La fosfolipasa permite la degradación y el remodelado de fosfogliceroles
++
Aun cuando los fosfolípidos se degradan de modo activo, cada porción de la molécula muestra recambio a un índice diferente; por ejemplo, el tiempo de recambio del grupo fosfato es diferente del tiempo de recambio del grupo 1-acilo. Esto se debe a la presencia de enzimas que permiten degradación parcial seguida por resíntesis (figura 24-5). La fosfolipasa A2 cataliza la hidrólisis de glicerofosfolípidos para formar un FFA y lisofosfolípido que, a su vez, se puede volver a acilar por la acil-CoA en presencia de una aciltransferasa. De manera alternativa, el lisofosfolípido (p. ej., lisolecitina) es atacado por la lisofosfolipasa, lo que forma la base glicerilo fosforilo correspondiente, que entonces puede ser dividida por una hidrolasa, lo que libera glicerol 3-fosfato más base. Las fosfolipasas A1, A2, B, C y D atacan los enlaces indicados en la figura 24-6. La fosfolipasa A2 se encuentra en el líquido pancreático y en el veneno de serpiente, así como en muchos tipos de células; la fosfolipasa C es una de las principales toxinas secretadas por bacterias, y se sabe que la fosfolipasa D participa en la transducción de señal en mamíferos.
++
++
++
La lisolecitina (lisofosfatidilcolina) puede formarse mediante una ruta alternativa que involucra la lecitina:colesterol aciltransferasa (LCAT). Esta enzima, que se encuentra en el plasma, cataliza la transferencia de un residuo ácido graso desde la posición 2 de la lecitina hacia el colesterol para formar colesteril éster y lisolecitina, y se considera que es la causa de gran parte del colesteril éster en las lipoproteínas plasmáticas (capítulo 25).
++
Los ácidos grasos saturados de cadena larga se encuentran de modo predominante en la posición 1 de fosfolípidos, mientras que los ácidos poliinsaturados (p. ej., los precursores de PG) se incorporan con mayor frecuencia hacia la posición 2. La incorporación de ácidos grasos hacia lecitina ocurre de tres maneras: por medio de síntesis completa del fosfolípido, mediante transacilación entre colesteril éster y lisolecitina, y por medio de acilación directa de la lisolecitina por la acil-CoA. Así, es posible un intercambio continuo de los ácidos grasos, sobre todo en lo que se refiere a introducir EFA en moléculas de fosfolípido.
+++
Todos los esfingolípidos se forman a partir de ceramida
++
La ceramida (capítulo 21) se sintetiza en el retículo endoplásmico a partir del aminoácido serina, como se muestra en la figura 24-7. La ceramida es una importante molécula emisora de señales (segundo mensajero) que regula vías, incluso la muerte celular programada (apoptosis), el ciclo celular, y la diferenciación y senescencia celulares.
++
++
Las esfingomielinas (figura 21-11) son fosfolípidos y se forman cuando la ceramida reacciona con fosfatidilcolina para formar esfingomielina más diacilglicerol (figura 24-8A). Esto sucede sobre todo en el aparato de Golgi y en menor grado en la membrana plasmática.
++
+++
Los glucoesfingolípidos son una combinación de ceramida con uno o más residuos azúcar
++
Los glucoesfingolípidos (cerebrósidos) más simples son la galactosilceramida (GalCer) y la glucosilceramida (GlcCer) (figura 21-15). La GalCer es un lípido importante de la mielina, mientras que la GlcCer es el principal glucoesfingolípido de los tejidos extraneurales y un precursor de casi todos los glucoesfingolípidos más complejos. La GalCer (figura 24-8B) se forma en una reacción entre ceramida y UDPGal (formada por epimerización a partir de UDPGlc, figura 20-6).
++
La sulfogalactosilceramida y otros sulfolípidos como los sulfo(galacto)-glicerolípidos, y los esteroide sulfatos se forman luego de reacciones adicionales que comprenden 39-fosfoadenosina-59-fosfosulfato (PAPS; “sulfato activo”). Los gangliósidos se sintetizan a partir de la ceramida mediante la adición por pasos de azúcares activados (p. ej., UDPGlc y UDPGal) y un ácido siálico, por lo general ácido N-acetilneuramínico (figura 24-9). Puede formarse un gran número de gangliósidos de peso molecular creciente. Casi todas las enzimas que transfieren a azúcares desde azúcares nucleótido (glucosil transferasas) se encuentran en el aparato de Golgi.
++
++
Los glucoesfingolípidos son constituyentes de la hojuela externa de las membranas plasmáticas, y tienen importancia en la adherencia celular y el reconocimiento celular. Algunos son antígenos, por ejemplo, sustancias del grupo sanguíneo ABO. Ciertos gangliósidos funcionan como receptores para toxinas bacterianas (p. ej., para la toxina del cólera, que después activa a la adenilil ciclasa).